IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v249y2016i3p1082-1091.html
   My bibliography  Save this article

Inventory performance under staggered deliveries and autocorrelated demand

Author

Listed:
  • Hedenstierna, Carl Philip T.
  • Disney, Stephen M.

Abstract

Production plans often span a whole week or month, even when independent production lots are completed every day and service performance is tallied daily. Such policies are said to use staggered deliveries, meaning that the production rate for multiple days are determined at a single point in time. Assuming autocorrelated demand, and linear inventory holding and backlog costs, we identify the optimal replenishment policy for order cycles of length P. With the addition of a once-per-cycle audit cost, we optimize the order cycle length P* via an inverse-function approach. In addition, we characterize periodic inventory costs, availability, and fill rate. As a consequence of staggering deliveries, the inventory level becomes cyclically heteroskedastic. This manifests itself as ripples in the expected cost and service levels. Nevertheless, the cost-optimal replenishment policy achieves a constant availability by using time-varying safety stocks; this is not the case with suboptimal constant safety stock policies, where the availability fluctuates over the cycle.

Suggested Citation

  • Hedenstierna, Carl Philip T. & Disney, Stephen M., 2016. "Inventory performance under staggered deliveries and autocorrelated demand," European Journal of Operational Research, Elsevier, vol. 249(3), pages 1082-1091.
  • Handle: RePEc:eee:ejores:v:249:y:2016:i:3:p:1082-1091
    DOI: 10.1016/j.ejor.2015.09.060
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221715009029
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2015.09.060?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Xiaolong, 2007. "Inventory control under temporal demand heteroscedasticity," European Journal of Operational Research, Elsevier, vol. 182(1), pages 127-144, October.
    2. Prak, Dennis & Teunter, Ruud & Riezebos, Jan, 2015. "Periodic review and continuous ordering," European Journal of Operational Research, Elsevier, vol. 242(3), pages 820-827.
    3. Hau L. Lee & Kut C. So & Christopher S. Tang, 2000. "The Value of Information Sharing in a Two-Level Supply Chain," Management Science, INFORMS, vol. 46(5), pages 626-643, May.
    4. Nesim Erkip & Warren H. Hausman & Steven Nahmias, 1990. "Optimal Centralized Ordering Policies in Multi-Echelon Inventory Systems with Correlated Demands," Management Science, INFORMS, vol. 36(3), pages 381-392, March.
    5. Hosoda, Takamichi & Disney, Stephen M., 2009. "Impact of market demand mis-specification on a two-level supply chain," International Journal of Production Economics, Elsevier, vol. 121(2), pages 739-751, October.
    6. Silver, Edward A. & Robb, David J., 2008. "Some insights regarding the optimal reorder period in periodic review inventory systems," International Journal of Production Economics, Elsevier, vol. 112(1), pages 354-366, March.
    7. Chiang, Chi, 2009. "A periodic review replenishment model with a refined delivery scenario," International Journal of Production Economics, Elsevier, vol. 118(1), pages 253-259, March.
    8. Lee, Yun Shin, 2014. "A semi-parametric approach for estimating critical fractiles under autocorrelated demand," European Journal of Operational Research, Elsevier, vol. 234(1), pages 163-173.
    9. Lian, Zhaotong & Deshmukh, Abhijit & Wang, Jin, 2006. "The optimal frozen period in a dynamic production model," International Journal of Production Economics, Elsevier, vol. 103(2), pages 648-655, October.
    10. Disney, Stephen M. & Gaalman, Gerard J.C. & Hedenstierna, Carl Philip T. & Hosoda, Takamichi, 2015. "Fill rate in a periodic review order-up-to policy under auto-correlated normally distributed, possibly negative, demand," International Journal of Production Economics, Elsevier, vol. 170(PB), pages 501-512.
    11. Chiang, Chi, 2001. "Order splitting under periodic review inventory systems," International Journal of Production Economics, Elsevier, vol. 70(1), pages 67-76, March.
    12. James Flynn & Stanley Garstka, 1997. "The Optimal Review Period in a Dynamic Inventory Model," Operations Research, INFORMS, vol. 45(5), pages 736-750, October.
    13. James Flynn & Stanley Garstka, 1990. "A Dynamic Inventory Model with Periodic Auditing," Operations Research, INFORMS, vol. 38(6), pages 1089-1103, December.
    14. Flynn, James, 2008. "An effective heuristic for the review period in an inventory model with staggered deliveries and normal demands," European Journal of Operational Research, Elsevier, vol. 186(2), pages 671-680, April.
    15. Chiang, Chi, 2007. "Optimal ordering policies for periodic-review systems with a refined intra-cycle time scale," European Journal of Operational Research, Elsevier, vol. 177(2), pages 872-881, March.
    16. Alp Akcay & Bahar Biller & Sridhar Tayur, 2011. "Improved Inventory Targets in the Presence of Limited Historical Demand Data," Manufacturing & Service Operations Management, INFORMS, vol. 13(3), pages 297-309, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Petropoulos, Fotios & Wang, Xun & Disney, Stephen M., 2019. "The inventory performance of forecasting methods: Evidence from the M3 competition data," International Journal of Forecasting, Elsevier, vol. 35(1), pages 251-265.
    2. Hedenstierna, Carl Philip T. & Disney, Stephen M., 2018. "Avoiding the capacity cost trap: Three means of smoothing under cyclical production planning," International Journal of Production Economics, Elsevier, vol. 201(C), pages 149-162.
    3. Hosoda, Takamichi & Disney, Stephen M., 2018. "A unified theory of the dynamics of closed-loop supply chains," European Journal of Operational Research, Elsevier, vol. 269(1), pages 313-326.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hedenstierna, Carl Philip T. & Disney, Stephen M., 2018. "Avoiding the capacity cost trap: Three means of smoothing under cyclical production planning," International Journal of Production Economics, Elsevier, vol. 201(C), pages 149-162.
    2. Ali, Mohammad M. & Babai, Mohamed Zied & Boylan, John E. & Syntetos, A.A., 2017. "Supply chain forecasting when information is not shared," European Journal of Operational Research, Elsevier, vol. 260(3), pages 984-994.
    3. Flynn, James, 2008. "An effective heuristic for the review period in an inventory model with staggered deliveries and normal demands," European Journal of Operational Research, Elsevier, vol. 186(2), pages 671-680, April.
    4. Dreyfuss, Michael & Giat, Yahel, 2019. "Allocating spares to maximize the window fill rate in a periodic review inventory system," International Journal of Production Economics, Elsevier, vol. 214(C), pages 151-162.
    5. Chiang, Chi, 2009. "A periodic review replenishment model with a refined delivery scenario," International Journal of Production Economics, Elsevier, vol. 118(1), pages 253-259, March.
    6. Pastore, Erica & Alfieri, Arianna & Zotteri, Giulio & Boylan, John E., 2020. "The impact of demand parameter uncertainty on the bullwhip effect," European Journal of Operational Research, Elsevier, vol. 283(1), pages 94-107.
    7. Prak, Dennis & Teunter, Ruud & Syntetos, Aris, 2017. "On the calculation of safety stocks when demand is forecasted," European Journal of Operational Research, Elsevier, vol. 256(2), pages 454-461.
    8. Li Chen & Hau L. Lee, 2012. "Bullwhip Effect Measurement and Its Implications," Operations Research, INFORMS, vol. 60(4), pages 771-784, August.
    9. Kaijie Zhu & Ulrich W. Thonemann, 2004. "Modeling the Benefits of Sharing Future Demand Information," Operations Research, INFORMS, vol. 52(1), pages 136-147, February.
    10. Trapero, Juan R. & Cardós, Manuel & Kourentzes, Nikolaos, 2019. "Empirical safety stock estimation based on kernel and GARCH models," Omega, Elsevier, vol. 84(C), pages 199-211.
    11. Babai, M.Z. & Boylan, J.E. & Syntetos, A.A. & Ali, M.M., 2016. "Reduction of the value of information sharing as demand becomes strongly auto-correlated," International Journal of Production Economics, Elsevier, vol. 181(PA), pages 130-135.
    12. Halkos, George & Kevork, Ilias, 2013. "Forecasting the optimal order quantity in the newsvendor model under a correlated demand," MPRA Paper 44189, University Library of Munich, Germany.
    13. James Flynn, 2000. "Selecting T for a periodic review inventory model with staggered deliveries," Naval Research Logistics (NRL), John Wiley & Sons, vol. 47(4), pages 329-352, June.
    14. Zhu, Xiaowei & Mukhopadhyay, Samar K. & Yue, Xiaohang, 2011. "Role of forecast effort on supply chain profitability under various information sharing scenarios," International Journal of Production Economics, Elsevier, vol. 129(2), pages 284-291, February.
    15. Xie, Jinxing & Zhou, Deming & Wei, Jerry C. & Zhao, Xiande, 2010. "Price discount based on early order commitment in a single manufacturer-multiple retailer supply chain," European Journal of Operational Research, Elsevier, vol. 200(2), pages 368-376, January.
    16. Hosoda, Takamichi & Disney, Stephen M., 2012. "A delayed demand supply chain: Incentives for upstream players," Omega, Elsevier, vol. 40(4), pages 478-487.
    17. Layth C. Alwan & Christian H. Weiß, 2017. "INAR implementation of newsvendor model for serially dependent demand counts," International Journal of Production Research, Taylor & Francis Journals, vol. 55(4), pages 1085-1099, February.
    18. Fang, Xin & Zhang, Cheng & Robb, David J. & Blackburn, Joseph D., 2013. "Decision support for lead time and demand variability reduction," Omega, Elsevier, vol. 41(2), pages 390-396.
    19. Hosoda, Takamichi & Disney, Stephen M., 2012. "On the replenishment policy when the market demand information is lagged," International Journal of Production Economics, Elsevier, vol. 135(1), pages 458-467.
    20. Urban, Timothy L., 2005. "A periodic-review model with serially-correlated, inventory-level-dependent demand," International Journal of Production Economics, Elsevier, vol. 95(3), pages 287-295, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:249:y:2016:i:3:p:1082-1091. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.