IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/44189.html
   My bibliography  Save this paper

Forecasting the optimal order quantity in the newsvendor model under a correlated demand

Author

Listed:
  • Halkos, George
  • Kevork, Ilias

Abstract

This paper considers the classical newsvendor model when, (a) demand is autocorrelated, (b) the parameters of the marginal distribution of demand are unknown, and (c) historical data for demand are available for a sample of successive periods. An estimator for the optimal order quantity is developed by replacing in the theoretical formula which gives this quantity the stationary mean and the stationary variance with their corresponding maximum likelihood estimators. The statistical properties of this estimator are explored and general expressions for prediction intervals for the optimal order quantity are derived in two cases: (a) when the sample consists of two observations, and (b) when the sample is considered as sufficiently large. Regarding the asymptotic prediction intervals, specifications of the general expression are obtained for the time-series models AR(1), MA(1), and ARMA(1,1). These intervals are estimated in finite samples using in their theoretical expressions, the sample mean, the sample variance, and estimates of the theoretical autocorrelation coefficients at lag one and lag two. To assess the impact of this estimation procedure on the optimal performance of the newsvendor model, four accuracy implication metrics are considered which are related to: (a) the mean square error of the estimator, (b) the accuracy and the validity of prediction intervals, and (c) the actual probability of running out of stock during the period when the optimal order quantity is estimated. For samples with more than two observations, these metrics are evaluated through simulations, and their values are presented to appropriately constructed tables. The general conclusion is that the accuracy and the validity of the estimation procedure for the optimal order quantity depends upon the critical fractile, the sample size, the autocorrelation level, and the convergence rate of the theoretical autocorrelation function to zero.

Suggested Citation

  • Halkos, George & Kevork, Ilias, 2013. "Forecasting the optimal order quantity in the newsvendor model under a correlated demand," MPRA Paper 44189, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:44189
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/44189/1/MPRA_paper_44189.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Khouja, Moutaz, 1999. "The single-period (news-vendor) problem: literature review and suggestions for future research," Omega, Elsevier, vol. 27(5), pages 537-553, October.
    2. Zhang, Xiaolong, 2007. "Inventory control under temporal demand heteroscedasticity," European Journal of Operational Research, Elsevier, vol. 182(1), pages 127-144, October.
    3. John Boylan & Aris Syntetos, 2006. "Accuracy and Accuracy Implication Metrics for Intermittent Demand," Foresight: The International Journal of Applied Forecasting, International Institute of Forecasters, issue 4, pages 39-42, June.
    4. Halkos, George & Kevork, Ilias, 2012. "Evaluating alternative frequentist inferential approaches for optimal order quantities in the newsvendor model under exponential demand," MPRA Paper 39650, University Library of Munich, Germany.
    5. G. D. Johnson & H. E. Thompson, 1975. "Optimality of Myopic Inventory Policies for Certain Dependent Demand Processes," Management Science, INFORMS, vol. 21(11), pages 1303-1307, July.
    6. Kevork, Ilias S., 2010. "Estimating the optimal order quantity and the maximum expected profit for single-period inventory decisions," Omega, Elsevier, vol. 38(3-4), pages 218-227, June.
    7. Syntetos, Aris A. & Nikolopoulos, Konstantinos & Boylan, John E., 2010. "Judging the judges through accuracy-implication metrics: The case of inventory forecasting," International Journal of Forecasting, Elsevier, vol. 26(1), pages 134-143, January.
    8. Halkos, George & Kevork, Ilias, 2012. "The classical newsvendor model under normal demand with large coefficients of variation," MPRA Paper 40414, University Library of Munich, Germany.
    9. Janssen, Elleke & Strijbosch, Leo & Brekelmans, Ruud, 2009. "Assessing the effects of using demand parameters estimates in inventory control and improving the performance using a correction function," International Journal of Production Economics, Elsevier, vol. 118(1), pages 34-42, March.
    10. Fotopoulos, Stergios & Wang, Min-Chiang & Rao, S. Subba, 1988. "Safety stock determination with correlated demands and arbitrary lead times," European Journal of Operational Research, Elsevier, vol. 35(2), pages 172-181, May.
    11. Urban, Timothy L., 2005. "A periodic-review model with serially-correlated, inventory-level-dependent demand," International Journal of Production Economics, Elsevier, vol. 95(3), pages 287-295, March.
    12. Strijbosch, Leo W.G. & Syntetos, Aris A. & Boylan, John E. & Janssen, Elleke, 2011. "On the interaction between forecasting and stock control: The case of non-stationary demand," International Journal of Production Economics, Elsevier, vol. 133(1), pages 470-480, September.
    13. Alp Akcay & Bahar Biller & Sridhar Tayur, 2011. "Improved Inventory Targets in the Presence of Limited Historical Demand Data," Manufacturing & Service Operations Management, INFORMS, vol. 13(3), pages 297-309, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Halkos, George & Kevork, Ilias, 2014. "Διαστήματα Εμπιστοσύνης Για Εκατοστημόρια Σε Στάσιμες Arma Διαδικασίες: Μία Εμπειρική Εφαρμογή Σε Περιβαλλοντικά Δεδομένα [Confidence intervals for percentiles in stationary ARMA processes: An appl," MPRA Paper 56134, University Library of Munich, Germany.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Halkos, George & Kevork, Ilias, 2012. "Unbiased estimation of maximum expected profits in the Newsvendor Model: a case study analysis," MPRA Paper 40724, University Library of Munich, Germany.
    2. Prak, Dennis & Teunter, Ruud & Syntetos, Aris, 2017. "On the calculation of safety stocks when demand is forecasted," European Journal of Operational Research, Elsevier, vol. 256(2), pages 454-461.
    3. Halkos, George & Kevork, Ilias, 2012. "Evaluating alternative frequentist inferential approaches for optimal order quantities in the newsvendor model under exponential demand," MPRA Paper 39650, University Library of Munich, Germany.
    4. Halkos, George & Kevork, Ilias, 2012. "The classical newsvendor model under normal demand with large coefficients of variation," MPRA Paper 40414, University Library of Munich, Germany.
    5. Altay, Nezih & Litteral, Lewis A. & Rudisill, Frank, 2012. "Effects of correlation on intermittent demand forecasting and stock control," International Journal of Production Economics, Elsevier, vol. 135(1), pages 275-283.
    6. Banerjee, Pradeep K. & Turner, T. Rolf, 2012. "A flexible model for the pricing of perishable assets," Omega, Elsevier, vol. 40(5), pages 533-540.
    7. Trapero, Juan R. & Cardós, Manuel & Kourentzes, Nikolaos, 2019. "Quantile forecast optimal combination to enhance safety stock estimation," International Journal of Forecasting, Elsevier, vol. 35(1), pages 239-250.
    8. Halkos, George & Kevork, Ilias, 2012. "Validity and precision of estimates in the classical newsvendor model with exponential and rayleigh demand," MPRA Paper 36460, University Library of Munich, Germany.
    9. Zhu, Sha & Jaarsveld, Willem van & Dekker, Rommert, 2020. "Spare parts inventory control based on maintenance planning," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    10. Halkos, George & Kevork, Ilias, 2014. "Διαστήματα Εμπιστοσύνης Για Εκατοστημόρια Σε Στάσιμες Arma Διαδικασίες: Μία Εμπειρική Εφαρμογή Σε Περιβαλλοντικά Δεδομένα [Confidence intervals for percentiles in stationary ARMA processes: An appl," MPRA Paper 56134, University Library of Munich, Germany.
    11. Khanra, Avijit & Soman, Chetan & Bandyopadhyay, Tathagata, 2014. "Sensitivity analysis of the newsvendor model," European Journal of Operational Research, Elsevier, vol. 239(2), pages 403-412.
    12. Amar Sapra & Van-Anh Truong & Rachel Q. Zhang, 2010. "How Much Demand Should Be Fulfilled?," Operations Research, INFORMS, vol. 58(3), pages 719-733, June.
    13. Xiang, Mengyuan & Rossi, Roberto & Martin-Barragan, Belen & Tarim, S. Armagan, 2018. "Computing non-stationary (s, S) policies using mixed integer linear programming," European Journal of Operational Research, Elsevier, vol. 271(2), pages 490-500.
    14. Riezebos, J. & Gaalman, G.J.C., 2009. "A single-item inventory model for expected inventory order crossovers," International Journal of Production Economics, Elsevier, vol. 121(2), pages 601-609, October.
    15. Layth C. Alwan & Christian H. Weiß, 2017. "INAR implementation of newsvendor model for serially dependent demand counts," International Journal of Production Research, Taylor & Francis Journals, vol. 55(4), pages 1085-1099, February.
    16. Urban, Timothy L., 2005. "A periodic-review model with serially-correlated, inventory-level-dependent demand," International Journal of Production Economics, Elsevier, vol. 95(3), pages 287-295, March.
    17. Emilio Carrizosa & Alba V. Olivares-Nadal & Pepa Ramírez-Cobo, 2020. "Embedding the production policy in location-allocation decisions," 4OR, Springer, vol. 18(3), pages 357-380, September.
    18. Halkos, George & Kevork, Ilias & Tziourtzioumis, Chris, 2014. "On the convexity of the cost function for the (Q,R) inventory model," MPRA Paper 55675, University Library of Munich, Germany.
    19. Guo, Min & Chen, Yu-wang & Wang, Hongwei & Yang, Jian-Bo & Zhang, Keyong, 2019. "The single-period (newsvendor) problem under interval grade uncertainties," European Journal of Operational Research, Elsevier, vol. 273(1), pages 198-216.
    20. Halkos, George & Kevork, Ilias, 2012. "Evaluating alternative estimators for optimal order quantities in the newsvendor model with skewed demand," MPRA Paper 36205, University Library of Munich, Germany.

    More about this item

    Keywords

    Newsvendor model; accuracy implication metrics; time-series models; prediction intervals; Monte-Carlo simulations;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • M11 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Business Administration - - - Production Management
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • M21 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Business Economics - - - Business Economics

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:44189. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.