IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v60y2012i4p771-784.html
   My bibliography  Save this article

Bullwhip Effect Measurement and Its Implications

Author

Listed:
  • Li Chen

    () (Fuqua School of Business, Duke University, Durham, North Carolina 27708)

  • Hau L. Lee

    () (Graduate School of Business, Stanford University, Stanford, California 94305)

Abstract

The bullwhip effect, or demand information distortion, has been a subject of both theoretical and empirical studies in the operations management literature. In this paper, we develop a simple set of formulas that describe the traditional bullwhip measure as a combined outcome of several important drivers, such as finite capacity, batch-ordering, and seasonality. Our modeling framework is descriptive in nature as it features certain plausible approximations that are commonly employed in practical inventory systems. The results are nonetheless compelling and can be used to explain various conflicting observations in previous empirical studies. Building on the theoretical framework, we discuss the managerial implications of the bullwhip measurement. We show that the measurement can be completely noninformative about the underlying supply chain cost performance if it is not linked to the operational details (such as decision intervals and leadtimes). Specifically, we show that an aggregated measurement over relatively long time periods can mask the operational-level bullwhip. In addition, we show that masking also exists under product or location aggregation in some illustrative cases.

Suggested Citation

  • Li Chen & Hau L. Lee, 2012. "Bullwhip Effect Measurement and Its Implications," Operations Research, INFORMS, vol. 60(4), pages 771-784, August.
  • Handle: RePEc:inm:oropre:v:60:y:2012:i:4:p:771-784
    DOI: 10.1287/opre.1120.1074
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.1120.1074
    Download Restriction: no

    References listed on IDEAS

    as
    1. Fair, Ray C., 1989. "The production-smoothing model is alive and well," Journal of Monetary Economics, Elsevier, vol. 24(3), pages 353-370, November.
    2. Karel H. van Donselaar & Vishal Gaur & Tom van Woensel & Rob A. C. M. Broekmeulen & Jan C. Fransoo, 2010. "Ordering Behavior in Retail Stores and Implications for Automated Replenishment," Management Science, INFORMS, vol. 56(5), pages 766-784, May.
    3. F. R. Richards, 1975. "Technical Note—Comments on the Distribution of Inventory Position in a Continuous-Review ( s , S ) Inventory System," Operations Research, INFORMS, vol. 23(2), pages 366-371, April.
    4. Alan S. Blinder, 1986. "Can the Production Smoothing Model of Inventory Behavior be Saved?," The Quarterly Journal of Economics, Oxford University Press, vol. 101(3), pages 431-453.
    5. Hau L. Lee & Kut C. So & Christopher S. Tang, 2000. "The Value of Information Sharing in a Two-Level Supply Chain," Management Science, INFORMS, vol. 46(5), pages 626-643, May.
    6. Ton de Kok & Fred Janssen & Jan van Doremalen & Erik van Wachem & Mathieu Clerkx & Winfried Peeters, 2005. "Philips Electronics Synchronizes Its Supply Chain to End the Bullwhip Effect," Interfaces, INFORMS, vol. 35(1), pages 37-48, February.
    7. Yossi Aviv, 2003. "A Time-Series Framework for Supply-Chain Inventory Management," Operations Research, INFORMS, vol. 51(2), pages 210-227, April.
    8. Nesim Erkip & Warren H. Hausman & Steven Nahmias, 1990. "Optimal Centralized Ordering Policies in Multi-Echelon Inventory Systems with Correlated Demands," Management Science, INFORMS, vol. 36(3), pages 381-392, March.
    9. Blanchard, Olivier J, 1983. "The Production and Inventory Behavior of the American Automobile Industry," Journal of Political Economy, University of Chicago Press, vol. 91(3), pages 365-400, June.
    10. Joel H. Steckel & Sunil Gupta & Anirvan Banerji, 2004. "Supply Chain Decision Making: Will Shorter Cycle Times and Shared Point-of-Sale Information Necessarily Help?," Management Science, INFORMS, vol. 50(4), pages 458-464, April.
    11. Robert L. Bray & Haim Mendelson, 2012. "Information Transmission and the Bullwhip Effect: An Empirical Investigation," Management Science, INFORMS, vol. 58(5), pages 860-875, May.
    12. Gérard P. Cachon, 1999. "Managing Supply Chain Demand Variability with Scheduled Ordering Policies," Management Science, INFORMS, vol. 45(6), pages 843-856, June.
    13. John D. Sterman, 1989. "Modeling Managerial Behavior: Misperceptions of Feedback in a Dynamic Decision Making Experiment," Management Science, INFORMS, vol. 35(3), pages 321-339, March.
    14. Roman Kapuściński & Sridhar Tayur, 1998. "A Capacitated Production-Inventory Model with Periodic Demand," Operations Research, INFORMS, vol. 46(6), pages 899-911, December.
    15. Charles C. Holt & Franco Modigliani & John P. Shelton, 1968. "The Transmission of Demand Fluctuations Through a Distribution and Production System, the Tv-Set Industry," Canadian Journal of Economics, Canadian Economics Association, vol. 1(4), pages 718-739, November.
    16. Frank Chen & Jennifer K. Ryan & David Simchi‐Levi, 2000. "The impact of exponential smoothing forecasts on the bullwhip effect," Naval Research Logistics (NRL), John Wiley & Sons, vol. 47(4), pages 269-286, June.
    17. Li Chen & Hau L. Lee, 2009. "Information Sharing and Order Variability Control Under a Generalized Demand Model," Management Science, INFORMS, vol. 55(5), pages 781-797, May.
    18. Gallego, Guillermo & Scheller-Wolf, Alan, 2000. "Capacitated inventory problems with fixed order costs: Some optimal policy structure," European Journal of Operational Research, Elsevier, vol. 126(3), pages 603-613, November.
    19. Kahn, James A, 1987. "Inventories and the Volatility of Production," American Economic Review, American Economic Association, vol. 77(4), pages 667-679, September.
    20. Michael Florian & Morton Klein, 1971. "Deterministic Production Planning with Concave Costs and Capacity Constraints," Management Science, INFORMS, vol. 18(1), pages 12-20, September.
    21. Hau L. Lee & V. Padmanabhan & Seungjin Whang, 1997. "Information Distortion in a Supply Chain: The Bullwhip Effect," Management Science, INFORMS, vol. 43(4), pages 546-558, April.
    22. Lai, Richard, 2005. "Bullwhip in a Spanish Shop," MPRA Paper 4758, University Library of Munich, Germany.
    23. Frank Chen & Zvi Drezner & Jennifer K. Ryan & David Simchi-Levi, 2000. "Quantifying the Bullwhip Effect in a Simple Supply Chain: The Impact of Forecasting, Lead Times, and Information," Management Science, INFORMS, vol. 46(3), pages 436-443, March.
    24. Alan S. Blinder, 1981. "Retail Inventory Behavior and Business Fluctuations," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 12(2), pages 443-520.
    25. Chen Shaoxiang, 2004. "The Infinite Horizon Periodic Review Problem with Setup Costs and Capacity Constraints: A Partial Characterization of the Optimal Policy," Operations Research, INFORMS, vol. 52(3), pages 409-421, June.
    26. Yossi Aviv, 2001. "The Effect of Collaborative Forecasting on Supply Chain Performance," Management Science, INFORMS, vol. 47(10), pages 1326-1343, October.
    27. Yossi Aviv, 2007. "On the Benefits of Collaborative Forecasting Partnerships Between Retailers and Manufacturers," Management Science, INFORMS, vol. 53(5), pages 777-794, May.
    28. Matthew J. Sobel, 1969. "Production Smoothing with Stochastic Demand I: Finite Horizon Case," Management Science, INFORMS, vol. 16(3), pages 195-207, November.
    29. Chen, Frank Y. & Feng, Youyi & Simchi-Levi, David, 2002. "Uniform distribution of inventory positions in two-echelon periodic review systems with batch-ordering policies and interdependent demands," European Journal of Operational Research, Elsevier, vol. 140(3), pages 648-654, August.
    30. Caplin, Andrew S, 1985. "The Variability of Aggregate Demand with (S, s) Inventory Policies," Econometrica, Econometric Society, vol. 53(6), pages 1395-1409, November.
    31. Rachel Croson & Karen Donohue, 2006. "Behavioral Causes of the Bullwhip Effect and the Observed Value of Inventory Information," Management Science, INFORMS, vol. 52(3), pages 323-336, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Robert L. Bray & Yuliang Yao & Yongrui Duan & Jiazhen Huo, 2019. "Ration Gaming and the Bullwhip Effect," Operations Research, INFORMS, vol. 67(2), pages 453-467, March.
    2. Li Chen & Jing-Sheng Song & Yue Zhang, 2017. "Serial Inventory Systems with Markov-Modulated Demand: Derivative Bounds, Asymptotic Analysis, and Insights," Operations Research, INFORMS, vol. 65(5), pages 1231-1249, October.
    3. Spiegler, Virginia L.M. & Naim, Mohamed M., 2017. "Investigating sustained oscillations in nonlinear production and inventory control models," European Journal of Operational Research, Elsevier, vol. 261(2), pages 572-583.
    4. Rafael Diaz, 2016. "Using dynamic demand information and zoning for the storage of non-uniform density stock keeping units," International Journal of Production Research, Taylor & Francis Journals, vol. 54(8), pages 2487-2498, April.
    5. Saravanan Kesavan & Tarun Kushwaha & Vishal Gaur, 2016. "Do High and Low Inventory Turnover Retailers Respond Differently to Demand Shocks?," Manufacturing & Service Operations Management, INFORMS, vol. 18(2), pages 198-215, May.
    6. Minner, Stefan & Transchel, Sandra, 2017. "Order variability in perishable product supply chains," European Journal of Operational Research, Elsevier, vol. 260(1), pages 93-107.
    7. Ojha, Divesh & Sahin, Funda & Shockley, Jeff & Sridharan, Sri V., 2019. "Is there a performance tradeoff in managing order fulfillment and the bullwhip effect in supply chains? The role of information sharing and information type," International Journal of Production Economics, Elsevier, vol. 208(C), pages 529-543.
    8. Robert L. Bray & Haim Mendelson, 2015. "Production Smoothing and the Bullwhip Effect," Manufacturing & Service Operations Management, INFORMS, vol. 17(2), pages 208-220, May.
    9. Nikolay Osadchiy & Vishal Gaur & Sridhar Seshadri, 2016. "Systematic Risk in Supply Chain Networks," Management Science, INFORMS, vol. 62(6), pages 1755-1777, June.
    10. Jin, Ming & DeHoratius, Nicole & Schmidt, Glen, 2017. "In search of intra-industry bullwhips," International Journal of Production Economics, Elsevier, vol. 191(C), pages 51-65.
    11. Bai, Xuelian & Fang, Ruirui & Henry, Elaine & Hu, Nan, 2020. "Supply chain hierarchical position and firms’ information quality," Journal of Financial Stability, Elsevier, vol. 51(C).
    12. Cannella, Salvatore & Dominguez, Roberto & Ponte, Borja & Framinan, Jose M., 2018. "Capacity restrictions and supply chain performance: Modelling and analysing load-dependent lead times," International Journal of Production Economics, Elsevier, vol. 204(C), pages 264-277.
    13. Alper Atamtürk & Andrés Gómez, 2017. "Maximizing a Class of Utility Functions Over the Vertices of a Polytope," Operations Research, INFORMS, vol. 65(2), pages 433-445, April.
    14. Li Chen & Wei Luo & Kevin Shang, 2017. "Measuring the Bullwhip Effect: Discrepancy and Alignment Between Information and Material Flows," Manufacturing & Service Operations Management, INFORMS, vol. 19(1), pages 36-51, February.
    15. Ying Rong & Lawrence V. Snyder & Zuo‐Jun Max Shen, 2017. "Bullwhip and reverse bullwhip effects under the rationing game," Naval Research Logistics (NRL), John Wiley & Sons, vol. 64(3), pages 203-216, April.
    16. Robert N. Boute & Jan A. Van Mieghem, 2015. "Global Dual Sourcing and Order Smoothing: The Impact of Capacity and Lead Times," Management Science, INFORMS, vol. 61(9), pages 2080-2099, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li Chen & Wei Luo & Kevin Shang, 2017. "Measuring the Bullwhip Effect: Discrepancy and Alignment Between Information and Material Flows," Manufacturing & Service Operations Management, INFORMS, vol. 19(1), pages 36-51, February.
    2. Wang, Xun & Disney, Stephen M., 2016. "The bullwhip effect: Progress, trends and directions," European Journal of Operational Research, Elsevier, vol. 250(3), pages 691-701.
    3. Gérard P. Cachon & Taylor Randall & Glen M. Schmidt, 2007. "In Search of the Bullwhip Effect," Manufacturing & Service Operations Management, INFORMS, vol. 9(4), pages 457-479, April.
    4. Isaksson, Olov H.D. & Seifert, Ralf W., 2016. "Quantifying the bullwhip effect using two-echelon data: A cross-industry empirical investigation," International Journal of Production Economics, Elsevier, vol. 171(P3), pages 311-320.
    5. Robert L. Bray & Haim Mendelson, 2012. "Information Transmission and the Bullwhip Effect: An Empirical Investigation," Management Science, INFORMS, vol. 58(5), pages 860-875, May.
    6. Zotteri, Giulio, 2013. "An empirical investigation on causes and effects of the Bullwhip-effect: Evidence from the personal care sector," International Journal of Production Economics, Elsevier, vol. 143(2), pages 489-498.
    7. Chatfield, Dean C. & Pritchard, Alan M., 2013. "Returns and the bullwhip effect," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 49(1), pages 159-175.
    8. Ruomeng Cui & Gad Allon & Achal Bassamboo & Jan A. Van Mieghem, 2015. "Information Sharing in Supply Chains: An Empirical and Theoretical Valuation," Management Science, INFORMS, vol. 61(11), pages 2803-2824, November.
    9. Ojha, Divesh & Sahin, Funda & Shockley, Jeff & Sridharan, Sri V., 2019. "Is there a performance tradeoff in managing order fulfillment and the bullwhip effect in supply chains? The role of information sharing and information type," International Journal of Production Economics, Elsevier, vol. 208(C), pages 529-543.
    10. Ma, Yungao & Wang, Nengmin & He, Zhengwen & Lu, Jizhou & Liang, Huigang, 2015. "Analysis of the bullwhip effect in two parallel supply chains with interacting price-sensitive demands," European Journal of Operational Research, Elsevier, vol. 243(3), pages 815-825.
    11. Sodhi, ManMohan S. & Tang, Christopher S., 2011. "The incremental bullwhip effect of operational deviations in an arborescent supply chain with requirements planning," European Journal of Operational Research, Elsevier, vol. 215(2), pages 374-382, December.
    12. Hau L. Lee & V. Padmanabhan & Seungjin Whang, 2004. "Comments on "Information Distortion in a Supply Chain: The Bullwhip Effect"," Management Science, INFORMS, vol. 50(12_supple), pages 1887-1893, December.
    13. Cantor, David E. & Katok, Elena, 2012. "Production smoothing in a serial supply chain: A laboratory investigation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(4), pages 781-794.
    14. Duc, Truong Ton Hien & Luong, Huynh Trung & Kim, Yeong-Dae, 2008. "A measure of bullwhip effect in supply chains with a mixed autoregressive-moving average demand process," European Journal of Operational Research, Elsevier, vol. 187(1), pages 243-256, May.
    15. Anupam Keshari & Nishikant Mishra & Nagesh Shukla & Steve McGuire & Sangeeta Khorana, 2018. "Multiple order-up-to policy for mitigating bullwhip effect in supply chain network," Annals of Operations Research, Springer, vol. 269(1), pages 361-386, October.
    16. Ouyang, Yanfeng, 2007. "The effect of information sharing on supply chain stability and the bullwhip effect," European Journal of Operational Research, Elsevier, vol. 182(3), pages 1107-1121, November.
    17. Lai, Richard, 2005. "Bullwhip in a Spanish Shop," MPRA Paper 4758, University Library of Munich, Germany.
    18. Kim, Ilhyung & Springer, Mark, 2008. "Measuring endogenous supply chain volatility: Beyond the bullwhip effect," European Journal of Operational Research, Elsevier, vol. 189(1), pages 172-193, August.
    19. Ton Hien Duc, Truong & Luong, Huynh Trung & Kim, Yeong-Dae, 2010. "Effect of the third-party warehouse on bullwhip effect and inventory cost in supply chains," International Journal of Production Economics, Elsevier, vol. 124(2), pages 395-407, April.
    20. Williams, Brent D. & Waller, Matthew A. & Ahire, Sanjay & Ferrier, Gary D., 2014. "Predicting retailer orders with POS and order data: The inventory balance effect," European Journal of Operational Research, Elsevier, vol. 232(3), pages 593-600.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:60:y:2012:i:4:p:771-784. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Matthew Walls). General contact details of provider: http://edirc.repec.org/data/inforea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.