IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v221y2012i1p118-128.html
   My bibliography  Save this article

Optimizing the supply chain configuration for make-to-order manufacturing

Author

Listed:
  • Li, Haitao
  • Womer, Keith

Abstract

We consider a make-to-order (MTO) manufacturer who has won multiple contracts with specified quantities to be delivered by certain due dates. Before production starts, the company must configure its supply chain and make sourcing decisions. It also needs to plan the starting time for each production task under limited availability of resources such as machines and workforce. We develop a model for simultaneously optimizing such sourcing and planning decisions while exploiting their tradeoffs. The resulting multi-mode resource-constrained project scheduling problem (MMRCPSP) with a nonlinear objective function is NP-complete. To efficiently solve it, a hybrid Benders decomposition (HBD) algorithm combining the strengths of both mathematical programming and constraint programming is developed. The HBD exploits the structure of the model formulation and decomposes it into a relaxed master problem handled by mixed-integer nonlinear programming (MINLP), and a scheduling feasibility sub-problem handled by constraint programming (CP). Cuts are iteratively generated by solving the feasibility sub-problem and added back to the relaxed master problem, until an optimal solution is found or infeasibility is proved. Computational experiments are conducted to examine performance of the model and algorithm. Insights about optimal configuration of MTO supply chains are drawn and discussed.

Suggested Citation

  • Li, Haitao & Womer, Keith, 2012. "Optimizing the supply chain configuration for make-to-order manufacturing," European Journal of Operational Research, Elsevier, vol. 221(1), pages 118-128.
  • Handle: RePEc:eee:ejores:v:221:y:2012:i:1:p:118-128
    DOI: 10.1016/j.ejor.2012.03.025
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221712002342
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2012.03.025?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kolisch, Rainer, 2001. "Make-to-order assembly management," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 14979, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    2. Boaz Ronen & Dan Trietsch, 1988. "A Decision Support System for Purchasing Management of Large Projects," Operations Research, INFORMS, vol. 36(6), pages 882-890, December.
    3. Vipul Jain & Ignacio E. Grossmann, 2001. "Algorithms for Hybrid MILP/CP Models for a Class of Optimization Problems," INFORMS Journal on Computing, INFORMS, vol. 13(4), pages 258-276, November.
    4. Sawik, Tadeusz, 2010. "Single vs. multiple objective supplier selection in a make to order environment," Omega, Elsevier, vol. 38(3-4), pages 203-212, June.
    5. Kolisch, Rainer, 2000. "Integration of assembly and fabrication for make-to-order production," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 335, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    6. Stephen C. Graves & Sean P. Willems, 2005. "Optimizing the Supply Chain Configuration for New Products," Management Science, INFORMS, vol. 51(8), pages 1165-1180, August.
    7. Nicholas G. Hall & Chris N. Potts, 2003. "Supply chain scheduling: Batching and delivery," Operations Research, INFORMS, vol. 51(4), pages 566-584, August.
    8. Kolisch, R., 2000. "Integration of assembly and fabrication for make-to-order production," International Journal of Production Economics, Elsevier, vol. 68(3), pages 287-306, December.
    9. Jaber, M.Y. & Bonney, M. & Moualek, I., 2009. "Lot sizing with learning, forgetting and entropy cost," International Journal of Production Economics, Elsevier, vol. 118(1), pages 19-25, March.
    10. Peidro, David & Mula, Josefa & Jiménez, Mariano & del Mar Botella, Ma, 2010. "A fuzzy linear programming based approach for tactical supply chain planning in an uncertainty environment," European Journal of Operational Research, Elsevier, vol. 205(1), pages 65-80, August.
    11. Rainer Kolisch & Arno Sprecher & Andreas Drexl, 1995. "Characterization and Generation of a General Class of Resource-Constrained Project Scheduling Problems," Management Science, INFORMS, vol. 41(10), pages 1693-1703, October.
    12. Biskup, Dirk, 2008. "A state-of-the-art review on scheduling with learning effects," European Journal of Operational Research, Elsevier, vol. 188(2), pages 315-329, July.
    13. Brucker, Peter & Drexl, Andreas & Mohring, Rolf & Neumann, Klaus & Pesch, Erwin, 1999. "Resource-constrained project scheduling: Notation, classification, models, and methods," European Journal of Operational Research, Elsevier, vol. 112(1), pages 3-41, January.
    14. Amini, Mehdi & Li, Haitao, 2011. "Supply chain configuration for diffusion of new products: An integrated optimization approach," Omega, Elsevier, vol. 39(3), pages 313-322, June.
    15. John N. Hooker, 2002. "Logic, Optimization, and Constraint Programming," INFORMS Journal on Computing, INFORMS, vol. 14(4), pages 295-321, November.
    16. Bertrand, J. W. M. & Sridharan, V., 2001. "A study of simple rules for subcontracting in make-to-order manufacturing," European Journal of Operational Research, Elsevier, vol. 128(3), pages 509-531, February.
    17. Norman Keith Womer, 1979. "Learning Curves, Production Rate, and Program Costs," Management Science, INFORMS, vol. 25(4), pages 312-319, April.
    18. Haitao Li & Keith Womer, 2007. "A model and procedure for competitive bidding under resource constraints," International Journal of Operational Research, Inderscience Enterprises Ltd, vol. 2(4), pages 452-480.
    19. Wouters, Marc J. F., 1991. "Economic evaluation of leadtime reduction," International Journal of Production Economics, Elsevier, vol. 22(2), pages 111-120, November.
    20. Berger, Paul D. & Gerstenfeld, Arthur & Zeng, Amy Z., 2004. "How many suppliers are best? A decision-analysis approach," Omega, Elsevier, vol. 32(1), pages 9-15, February.
    21. Wu, Desheng Dash & Zhang, Yidong & Wu, Dexiang & Olson, David L., 2010. "Fuzzy multi-objective programming for supplier selection and risk modeling: A possibility approach," European Journal of Operational Research, Elsevier, vol. 200(3), pages 774-787, February.
    22. Demeulemeester, Erik L. & Herroelen, Willy S., 1996. "Modelling setup times, process batches and transfer batches using activity network logic," European Journal of Operational Research, Elsevier, vol. 89(2), pages 355-365, March.
    23. Demirtas, Ezgi Aktar & Üstün, Özden, 2008. "An integrated multiobjective decision making process for supplier selection and order allocation," Omega, Elsevier, vol. 36(1), pages 76-90, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nakandala, Dilupa & Samaranayake, Premaratne & Lau, H.C.W., 2013. "A fuzzy-based decision support model for monitoring on-time delivery performance: A textile industry case study," European Journal of Operational Research, Elsevier, vol. 225(3), pages 507-517.
    2. Venkatesh, V.G. & Rathi, Snehal & Patwa, Sriyans, 2015. "Analysis on supply chain risks in Indian apparel retail chains and proposal of risk prioritization model using Interpretive structural modeling," Journal of Retailing and Consumer Services, Elsevier, vol. 26(C), pages 153-167.
    3. Hartmann, Sönke & Briskorn, Dirk, 2022. "An updated survey of variants and extensions of the resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 297(1), pages 1-14.
    4. Sungmin Park & Pansoo Kim, 2021. "Operational Performance Evaluation of Korean Ship Parts Manufacturing Industry Using Dynamic Network SBM Model," Sustainability, MDPI, vol. 13(23), pages 1-20, November.
    5. Christian Finnsgård & Joakim Kalantari & Zeeshan Raza & Violeta Roso & Johan Woxenius, 2018. "Swedish shippers’ strategies for coping with slow-steaming in deep sea container shipping," Journal of Shipping and Trade, Springer, vol. 3(1), pages 1-24, December.
    6. Xuejie Bai & Yankui Liu, 2016. "Robust optimization of supply chain network design in fuzzy decision system," Journal of Intelligent Manufacturing, Springer, vol. 27(6), pages 1131-1149, December.
    7. Hong, Zhaofu & Dai, Wei & Luh, Hsing & Yang, Chenchen, 2018. "Optimal configuration of a green product supply chain with guaranteed service time and emission constraints," European Journal of Operational Research, Elsevier, vol. 266(2), pages 663-677.
    8. Zhen, Lu, 2014. "A three-stage optimization model for production and outsourcing under China’s export-oriented tax policies," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 69(C), pages 1-20.
    9. Yang, Liu & Ng, C.T., 2014. "Flexible capacity strategy with multiple market periods under demand uncertainty and investment constraint," European Journal of Operational Research, Elsevier, vol. 236(2), pages 511-521.
    10. Zhai, Yue & Hua, Guowei & Cheng, Meng & Cheng, T.C.E., 2023. "Production lead-time hedging and order allocation in an MTO supply chain," European Journal of Operational Research, Elsevier, vol. 311(3), pages 887-905.
    11. Dolgui, Alexandre & Kovalev, Sergey & Kovalyov, Mikhail Y. & Malyutin, Sergey & Soukhal, Ameur, 2018. "Optimal workforce assignment to operations of a paced assembly line," European Journal of Operational Research, Elsevier, vol. 264(1), pages 200-211.
    12. Durowoju, Olatunde A. & Chan, Hing Kai & Wang, Xiaojun & Akenroye, Temidayo, 2021. "Supply chain redesign implications to information disruption impact," International Journal of Production Economics, Elsevier, vol. 232(C).
    13. Amirhosein Gholami & Nasim Nezamoddini & Mohammad T. Khasawneh, 2023. "Customized orders management in connected make-to-order supply chains," Operations Management Research, Springer, vol. 16(3), pages 1428-1443, September.
    14. Surbhi Upadhyay & Suresh Kumar Garg & Rishu Sharma, 2023. "Analyzing the Factors for Implementing Make-to-Order Manufacturing System," Sustainability, MDPI, vol. 15(13), pages 1-22, June.
    15. Zhai, Yue & Cheng, T.C.E., 2022. "Lead-time quotation and hedging coordination in make-to-order supply chain," European Journal of Operational Research, Elsevier, vol. 300(2), pages 449-460.
    16. Shi, Xiutian & Shen, Houcai & Wu, Ting & Cheng, T.C.E., 2014. "Production planning and pricing policy in a make-to-stock system with uncertain demand subject to machine breakdowns," European Journal of Operational Research, Elsevier, vol. 238(1), pages 122-129.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Faiza Hamdi & Ahmed Ghorbel & Faouzi Masmoudi & Lionel Dupont, 2018. "Optimization of a supply portfolio in the context of supply chain risk management: literature review," Journal of Intelligent Manufacturing, Springer, vol. 29(4), pages 763-788, April.
    2. Liang Tang & Zhihong Jin & Xuwei Qin & Ke Jing, 2019. "Supply chain scheduling in a collaborative manufacturing mode: model construction and algorithm design," Annals of Operations Research, Springer, vol. 275(2), pages 685-714, April.
    3. Hartmann, Sönke & Briskorn, Dirk, 2010. "A survey of variants and extensions of the resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 207(1), pages 1-14, November.
    4. Hartmann, Sönke & Briskorn, Dirk, 2008. "A survey of variants and extensions of the resource-constrained project scheduling problem," Working Paper Series 02/2008, Hamburg School of Business Administration (HSBA).
    5. Hartmann, Sönke, 2011. "Project scheduling with resource capacities and requests varying with time," Working Paper Series 01/2011, Hamburg School of Business Administration (HSBA).
    6. Sawik, Tadeusz, 2011. "Selection of supply portfolio under disruption risks," Omega, Elsevier, vol. 39(2), pages 194-208, April.
    7. Sawik, Tadeusz, 2009. "Coordinated supply chain scheduling," International Journal of Production Economics, Elsevier, vol. 120(2), pages 437-451, August.
    8. Wendi Tian & Erik Demeulemeester, 2014. "Railway scheduling reduces the expected project makespan over roadrunner scheduling in a multi-mode project scheduling environment," Annals of Operations Research, Springer, vol. 213(1), pages 271-291, February.
    9. Yamashita, Denise Sato & Armentano, Vinicius Amaral & Laguna, Manuel, 2006. "Scatter search for project scheduling with resource availability cost," European Journal of Operational Research, Elsevier, vol. 169(2), pages 623-637, March.
    10. Cédric Verbeeck & Vincent Peteghem & Mario Vanhoucke & Pieter Vansteenwegen & El-Houssaine Aghezzaf, 2017. "A metaheuristic solution approach for the time-constrained project scheduling problem," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(2), pages 353-371, March.
    11. Naber, Anulark & Kolisch, Rainer, 2014. "MIP models for resource-constrained project scheduling with flexible resource profiles," European Journal of Operational Research, Elsevier, vol. 239(2), pages 335-348.
    12. Tallys Yunes & Ionuţ D. Aron & J. N. Hooker, 2010. "An Integrated Solver for Optimization Problems," Operations Research, INFORMS, vol. 58(2), pages 342-356, April.
    13. Wang, Xiong & Ferreira, Fernando A.F. & Chang, Ching-Ter, 2022. "Multi-objective competency-based approach to project scheduling and staff assignment: Case study of an internal audit project," Socio-Economic Planning Sciences, Elsevier, vol. 81(C).
    14. Kolisch, R., 2000. "Integration of assembly and fabrication for make-to-order production," International Journal of Production Economics, Elsevier, vol. 68(3), pages 287-306, December.
    15. Jürgen Kuster & Dietmar Jannach & Gerhard Friedrich, 2010. "Applying Local Rescheduling in response to schedule disruptions," Annals of Operations Research, Springer, vol. 180(1), pages 265-282, November.
    16. Sprecher, Arno, 1999. "Network decomposition techniques for resource-constrained project scheduling," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 505, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    17. Pamela C. Nolz, 2021. "Optimizing construction schedules and material deliveries in city logistics: a case study from the building industry," Flexible Services and Manufacturing Journal, Springer, vol. 33(3), pages 846-878, September.
    18. Artigues, Christian & Michelon, Philippe & Reusser, Stephane, 2003. "Insertion techniques for static and dynamic resource-constrained project scheduling," European Journal of Operational Research, Elsevier, vol. 149(2), pages 249-267, September.
    19. Van Peteghem, Vincent & Vanhoucke, Mario, 2014. "An experimental investigation of metaheuristics for the multi-mode resource-constrained project scheduling problem on new dataset instances," European Journal of Operational Research, Elsevier, vol. 235(1), pages 62-72.
    20. Sung, Chang Sup & Juhn, Jaeho, 2009. "Makespan minimization for a 2-stage assembly scheduling problem subject to component available time constraint," International Journal of Production Economics, Elsevier, vol. 119(2), pages 392-401, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:221:y:2012:i:1:p:118-128. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.