IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v51y2003i4p566-584.html
   My bibliography  Save this article

Supply chain scheduling: Batching and delivery

Author

Listed:
  • Nicholas G. Hall

    (Fisher College of Business, The Ohio State University, Columbus, Ohio 43210)

  • Chris N. Potts

    (Faculty of Mathematical Studies, University of Southampton, Southampton SO17 1BJ, United Kingdom)

Abstract

Although the supply chain management literature is extensive, the benefits and challenges of coordinated decision making within supply chain scheduling models have not been studied. We consider a variety of scheduling, batching, and delivery problems that arise in an arborescent supply chain where a supplier makes deliveries to several manufacturers, who also make deliveries to customers. The objective is to minimize the overall scheduling and delivery cost, using several classical scheduling objectives. This is achieved by scheduling the jobs and forming them into batches, each of which is delivered to the next downstream stage as a single shipment. For each problem, we either derive an efficient dynamic programming algorithm that minimizes the total cost of the supplier or that of the manufacturer, or we demonstrate that this problem is intractable. The total system cost minimization problem of a supplier and manufacturer who make cooperative decisions is also considered. We demonstrate that cooperation between a supplier and a manufacturer may reduce the total system cost by at least 20%, or 25%, or by up to 100%, depending upon the scheduling objective. Finally, we identify incentives and mechanisms for this cooperation, thereby demonstrating that our work has practical implications for improving the efficiency of supply chains.

Suggested Citation

  • Nicholas G. Hall & Chris N. Potts, 2003. "Supply chain scheduling: Batching and delivery," Operations Research, INFORMS, vol. 51(4), pages 566-584, August.
  • Handle: RePEc:inm:oropre:v:51:y:2003:i:4:p:566-584
    DOI: 10.1287/opre.51.4.566.16106
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.51.4.566.16106
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.51.4.566.16106?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Nash, John, 1953. "Two-Person Cooperative Games," Econometrica, Econometric Society, vol. 21(1), pages 128-140, April.
    2. Nash, John, 1950. "The Bargaining Problem," Econometrica, Econometric Society, vol. 18(2), pages 155-162, April.
    3. Erenguc, S. Selcuk & Simpson, N. C. & Vakharia, Asoo J., 1999. "Integrated production/distribution planning in supply chains: An invited review," European Journal of Operational Research, Elsevier, vol. 115(2), pages 219-236, June.
    4. Nicholas G. Hall & 'Maseka Lesaoana & Chris N. Potts, 2001. "Scheduling with Fixed Delivery Dates," Operations Research, INFORMS, vol. 49(1), pages 134-144, February.
    5. Z. Kevin Weng, 1995. "Channel Coordination and Quantity Discounts," Management Science, INFORMS, vol. 41(9), pages 1509-1522, September.
    6. Cheng, T. C. Edwin & Gordon, Valery S. & Kovalyov, Mikhail Y., 1996. "Single machine scheduling with batch deliveries," European Journal of Operational Research, Elsevier, vol. 94(2), pages 277-283, October.
    7. M. R. Garey & D. S. Johnson & Ravi Sethi, 1976. "The Complexity of Flowshop and Jobshop Scheduling," Mathematics of Operations Research, INFORMS, vol. 1(2), pages 117-129, May.
    8. Javad H. Ahmadi & Reza H. Ahmadi & Sriram Dasu & Christopher S. Tang, 1992. "Batching and Scheduling Jobs on Batch and Discrete Processors," Operations Research, INFORMS, vol. 40(4), pages 750-763, August.
    9. Thomas, Douglas J. & Griffin, Paul M., 1996. "Coordinated supply chain management," European Journal of Operational Research, Elsevier, vol. 94(1), pages 1-15, October.
    10. Potts, Chris N. & Kovalyov, Mikhail Y., 2000. "Scheduling with batching: A review," European Journal of Operational Research, Elsevier, vol. 120(2), pages 228-249, January.
    11. Hau L. Lee & V. Padmanabhan & Terry A. Taylor & Seungjin Whang, 2000. "Price Protection in the Personal Computer Industry," Management Science, INFORMS, vol. 46(4), pages 467-482, April.
    12. Scott Webster & Kenneth R. Baker, 1995. "Scheduling Groups of Jobs on a Single Machine," Operations Research, INFORMS, vol. 43(4), pages 692-703, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Selvarajah, Esaignani & Steiner, George, 2006. "Batch scheduling in a two-level supply chain--a focus on the supplier," European Journal of Operational Research, Elsevier, vol. 173(1), pages 226-240, August.
    2. Chang, Yung-Chia & Lee, Chung-Yee, 2004. "Machine scheduling with job delivery coordination," European Journal of Operational Research, Elsevier, vol. 158(2), pages 470-487, October.
    3. Esaignani Selvarajah & George Steiner, 2009. "Approximation Algorithms for the Supplier's Supply Chain Scheduling Problem to Minimize Delivery and Inventory Holding Costs," Operations Research, INFORMS, vol. 57(2), pages 426-438, April.
    4. Shen, Liji & Buscher, Udo, 2012. "Solving the serial batching problem in job shop manufacturing systems," European Journal of Operational Research, Elsevier, vol. 221(1), pages 14-26.
    5. Wang, Xiuli & Cheng, T.C.E., 2009. "Production scheduling with supply and delivery considerations to minimize the makespan," European Journal of Operational Research, Elsevier, vol. 194(3), pages 743-752, May.
    6. Xiuli Wang & T. C. Edwin Cheng, 2007. "Machine scheduling with an availability constraint and job delivery coordination," Naval Research Logistics (NRL), John Wiley & Sons, vol. 54(1), pages 11-20, February.
    7. Zhi-Long Chen, 2010. "Integrated Production and Outbound Distribution Scheduling: Review and Extensions," Operations Research, INFORMS, vol. 58(1), pages 130-148, February.
    8. Sun Lee, Ik & Yoon, S.H., 2010. "Coordinated scheduling of production and delivery stages with stage-dependent inventory holding costs," Omega, Elsevier, vol. 38(6), pages 509-521, December.
    9. Ullrich, Christian A., 2013. "Integrated machine scheduling and vehicle routing with time windows," European Journal of Operational Research, Elsevier, vol. 227(1), pages 152-165.
    10. Fowler, John W. & Mönch, Lars, 2022. "A survey of scheduling with parallel batch (p-batch) processing," European Journal of Operational Research, Elsevier, vol. 298(1), pages 1-24.
    11. Xiangtong Qi, 2005. "A logistics scheduling model: Inventory cost reduction by batching," Naval Research Logistics (NRL), John Wiley & Sons, vol. 52(4), pages 312-320, June.
    12. Ciftci, B.B. & Borm, P.E.M. & Hamers, H.J.M. & Slikker, M., 2008. "Batch Sequencing and Cooperation," Discussion Paper 2008-100, Tilburg University, Center for Economic Research.
    13. Potts, Chris N. & Kovalyov, Mikhail Y., 2000. "Scheduling with batching: A review," European Journal of Operational Research, Elsevier, vol. 120(2), pages 228-249, January.
    14. Dudek, Gregor & Stadtler, Hartmut, 2005. "Negotiation-based collaborative planning between supply chains partners," European Journal of Operational Research, Elsevier, vol. 163(3), pages 668-687, June.
    15. Guruprasad Pundoor & Zhi‐Long Chen, 2005. "Scheduling a production–distribution system to optimize the tradeoff between delivery tardiness and distribution cost," Naval Research Logistics (NRL), John Wiley & Sons, vol. 52(6), pages 571-589, September.
    16. Liji Shen & Jatinder N. D. Gupta, 2018. "Family scheduling with batch availability in flow shops to minimize makespan," Journal of Scheduling, Springer, vol. 21(2), pages 235-249, April.
    17. Demirkan, Haluk & Cheng, Hsing Kenneth, 2008. "The risk and information sharing of application services supply chain," European Journal of Operational Research, Elsevier, vol. 187(3), pages 765-784, June.
    18. B. M. T. Lin & T. C. E. Cheng, 2011. "Scheduling with centralized and decentralized batching policies in concurrent open shops," Naval Research Logistics (NRL), John Wiley & Sons, vol. 58(1), pages 17-27, February.
    19. Leng, Mingming & Zhu, An, 2009. "Side-payment contracts in two-person nonzero-sum supply chain games: Review, discussion and applications," European Journal of Operational Research, Elsevier, vol. 196(2), pages 600-618, July.
    20. Chung Keung Poon & Wenci Yu, 2005. "On-Line Scheduling Algorithms for a Batch Machine with Finite Capacity," Journal of Combinatorial Optimization, Springer, vol. 9(2), pages 167-186, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:51:y:2003:i:4:p:566-584. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.