IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v297y2022i1p1-14.html
   My bibliography  Save this article

An updated survey of variants and extensions of the resource-constrained project scheduling problem

Author

Listed:
  • Hartmann, Sönke
  • Briskorn, Dirk

Abstract

The resource-constrained project scheduling problem is to schedule activities subject to precedence and resource constraints such that the makespan is minimized. It has become a standard problem in the context of project scheduling which has attracted numerous researchers who developed both exact and heuristic scheduling procedures. However, it is a rather stylized model with assumptions that are too narrow to capture many real world requirements. Consequently, various extensions of the basic resource-constrained project scheduling problem have been developed. This paper builds on an overview which was published 10 years ago. Due to the unabated interest in the scientific community since it has been published the overview at hand delivers an update focussing on the last decade. The problem extensions are classified according to the structure of the resource-constrained project scheduling problem. We summarize generalizations of the activity concept, of the precedence relations, and of the resource constraints. Alternative objectives and approaches for scheduling multiple projects are discussed as well.

Suggested Citation

  • Hartmann, Sönke & Briskorn, Dirk, 2022. "An updated survey of variants and extensions of the resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 297(1), pages 1-14.
  • Handle: RePEc:eee:ejores:v:297:y:2022:i:1:p:1-14
    DOI: 10.1016/j.ejor.2021.05.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221721003982
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2021.05.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bianco, Lucio & Caramia, Massimiliano, 2012. "An exact algorithm to minimize the makespan in project scheduling with scarce resources and generalized precedence relations," European Journal of Operational Research, Elsevier, vol. 219(1), pages 73-85.
    2. Roman Čapek & Přemysl Šůcha & Zdeněk Hanzálek, 2015. "Scheduling of Production with Alternative Process Plans," International Handbooks on Information Systems, in: Christoph Schwindt & Jürgen Zimmermann (ed.), Handbook on Project Management and Scheduling Vol. 2, edition 127, chapter 0, pages 1187-1204, Springer.
    3. Symeon E. Christodoulou & Anastasia Michaelidou-Kamenou & Georgios Ellinas, 2015. "Heuristic Methods for Resource Leveling Problems," International Handbooks on Information Systems, in: Christoph Schwindt & Jürgen Zimmermann (ed.), Handbook on Project Management and Scheduling Vol.1, edition 127, chapter 0, pages 389-407, Springer.
    4. Kreter, Stefan & Rieck, Julia & Zimmermann, Jürgen, 2016. "Models and solution procedures for the resource-constrained project scheduling problem with general temporal constraints and calendars," European Journal of Operational Research, Elsevier, vol. 251(2), pages 387-403.
    5. A. Alan B. Pritsker & Lawrence J. Waiters & Philip M. Wolfe, 1969. "Multiproject Scheduling with Limited Resources: A Zero-One Programming Approach," Management Science, INFORMS, vol. 16(1), pages 93-108, September.
    6. Kreter, Stefan & Schutt, Andreas & Stuckey, Peter J. & Zimmermann, Jürgen, 2018. "Mixed-integer linear programming and constraint programming formulations for solving resource availability cost problems," European Journal of Operational Research, Elsevier, vol. 266(2), pages 472-486.
    7. Tavares, L. V., 2002. "A review of the contribution of Operational Research to Project Management," European Journal of Operational Research, Elsevier, vol. 136(1), pages 1-18, January.
    8. Geiger, Martin Josef, 2017. "A multi-threaded local search algorithm and computer implementation for the multi-mode, resource-constrained multi-project scheduling problem," European Journal of Operational Research, Elsevier, vol. 256(3), pages 729-741.
    9. Moukrim, Aziz & Quilliot, Alain & Toussaint, Hélène, 2015. "An effective branch-and-price algorithm for the Preemptive Resource Constrained Project Scheduling Problem based on minimal Interval Order Enumeration," European Journal of Operational Research, Elsevier, vol. 244(2), pages 360-368.
    10. Kolisch, R. & Padman, R., 2001. "An integrated survey of deterministic project scheduling," Omega, Elsevier, vol. 29(3), pages 249-272, June.
    11. Hartmann, Sonke & Kolisch, Rainer, 2000. "Experimental evaluation of state-of-the-art heuristics for the resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 127(2), pages 394-407, December.
    12. Zhu, Xia & Ruiz, Rubén & Li, Shiyu & Li, Xiaoping, 2017. "An effective heuristic for project scheduling with resource availability cost," European Journal of Operational Research, Elsevier, vol. 257(3), pages 746-762.
    13. Messelis, Tommy & De Causmaecker, Patrick, 2014. "An automatic algorithm selection approach for the multi-mode resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 233(3), pages 511-528.
    14. Van Peteghem, Vincent & Vanhoucke, Mario, 2014. "An experimental investigation of metaheuristics for the multi-mode resource-constrained project scheduling problem on new dataset instances," European Journal of Operational Research, Elsevier, vol. 235(1), pages 62-72.
    15. Gutjahr, Walter J. & Katzensteiner, Stefan & Reiter, Peter & Stummer, Christian & Denk, Michaela, 2010. "Multi-objective decision analysis for competence-oriented project portfolio selection," European Journal of Operational Research, Elsevier, vol. 205(3), pages 670-679, September.
    16. Kellenbrink, Carolin & Helber, Stefan, 2015. "Scheduling resource-constrained projects with a flexible project structure," European Journal of Operational Research, Elsevier, vol. 246(2), pages 379-391.
    17. José Coelho & Mario Vanhoucke, 2015. "The Multi-Mode Resource-Constrained Project Scheduling Problem," International Handbooks on Information Systems, in: Christoph Schwindt & Jürgen Zimmermann (ed.), Handbook on Project Management and Scheduling Vol.1, edition 127, chapter 0, pages 491-511, Springer.
    18. Erdem Colak & Meral Azizoglu, 2014. "A resource investment problem with time/resource trade-offs," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 65(5), pages 777-790, May.
    19. Browning, Tyson R. & Yassine, Ali A., 2010. "Resource-constrained multi-project scheduling: Priority rule performance revisited," International Journal of Production Economics, Elsevier, vol. 126(2), pages 212-228, August.
    20. Leyman, Pieter & Vanhoucke, Mario, 2017. "Capital- and resource-constrained project scheduling with net present value optimization," European Journal of Operational Research, Elsevier, vol. 256(3), pages 757-776.
    21. Coughlan, Eamonn T. & Lübbecke, Marco E. & Schulz, Jens, 2015. "A branch-price-and-cut algorithm for multi-mode resource leveling," European Journal of Operational Research, Elsevier, vol. 245(1), pages 70-80.
    22. Lucio Bianco & Massimiliano Caramia & Stefano Giordani, 2016. "Resource levelling in project scheduling with generalized precedence relationships and variable execution intensities," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 38(2), pages 405-425, March.
    23. Bernardo F. Almeida & Isabel Correia & Francisco Saldanha-da-Gama, 2018. "A biased random-key genetic algorithm for the project scheduling problem with flexible resources," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(2), pages 283-308, July.
    24. André Schnabel & Carolin Kellenbrink & Stefan Helber, 2018. "Profit-oriented scheduling of resource-constrained projects with flexible capacity constraints," Business Research, Springer;German Academic Association for Business Research, vol. 11(2), pages 329-356, September.
    25. Sacramento Quintanilla & Pilar Lino & Ángeles Pérez & Francisco Ballestín & Vicente Valls, 2015. "Integer Preemption Problems," International Handbooks on Information Systems, in: Christoph Schwindt & Jürgen Zimmermann (ed.), Handbook on Project Management and Scheduling Vol.1, edition 127, chapter 0, pages 231-250, Springer.
    26. Čapek, R. & Šůcha, P. & Hanzálek, Z., 2012. "Production scheduling with alternative process plans," European Journal of Operational Research, Elsevier, vol. 217(2), pages 300-311.
    27. Jens Poppenborg & Sigrid Knust, 2016. "Modeling and optimizing the evacuation of hospitals based on the MRCPSP with resource transfers," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 4(3), pages 349-380, September.
    28. Adrian Zimmermann & Norbert Trautmann, 2018. "A list-scheduling heuristic for the short-term planning of assessment centers," Journal of Scheduling, Springer, vol. 21(2), pages 131-142, April.
    29. Coelho, José & Vanhoucke, Mario, 2011. "Multi-mode resource-constrained project scheduling using RCPSP and SAT solvers," European Journal of Operational Research, Elsevier, vol. 213(1), pages 73-82, August.
    30. HazIr, Öncü & Erel, Erdal & Günalay, Yavuz, 2011. "Robust optimization models for the discrete time/cost trade-off problem," International Journal of Production Economics, Elsevier, vol. 130(1), pages 87-95, March.
    31. Hanyu Gu & Andreas Schutt & Peter J. Stuckey & Mark G. Wallace & Geoffrey Chu, 2015. "Exact and Heuristic Methods for the Resource-Constrained Net Present Value Problem," International Handbooks on Information Systems, in: Christoph Schwindt & Jürgen Zimmermann (ed.), Handbook on Project Management and Scheduling Vol.1, edition 127, chapter 0, pages 299-318, Springer.
    32. Feifei Li & Zhe Xu, 2018. "A multi-agent system for distributed multi-project scheduling with two-stage decomposition," PLOS ONE, Public Library of Science, vol. 13(10), pages 1-24, October.
    33. Naber, Anulark & Kolisch, Rainer, 2014. "MIP models for resource-constrained project scheduling with flexible resource profiles," European Journal of Operational Research, Elsevier, vol. 239(2), pages 335-348.
    34. Atan, Tankut & Eren, Elif, 2018. "Optimal project duration for resource leveling," European Journal of Operational Research, Elsevier, vol. 266(2), pages 508-520.
    35. Christian Stürck & Patrick Gerhards, 2018. "Providing Lower Bounds for the Multi-Mode Resource-Constrained Project Scheduling Problem," Operations Research Proceedings, in: Andreas Fink & Armin Fügenschuh & Martin Josef Geiger (ed.), Operations Research Proceedings 2016, pages 551-557, Springer.
    36. Homberger, Jörg & Fink, Andreas, 2017. "Generic negotiation mechanisms with side payments – Design, analysis and application for decentralized resource-constrained multi-project scheduling problems," European Journal of Operational Research, Elsevier, vol. 261(3), pages 1001-1012.
    37. Philipp Baumann & Cord-Ulrich Fündeling & Norbert Trautmann, 2015. "The Resource-Constrained Project Scheduling Problem with Work-Content Constraints," International Handbooks on Information Systems, in: Christoph Schwindt & Jürgen Zimmermann (ed.), Handbook on Project Management and Scheduling Vol.1, edition 127, chapter 0, pages 533-544, Springer.
    38. Georges Baydoun & Alain Haït & Robert Pellerin & Bernard Clément & Guillaume Bouvignies, 2016. "A rough-cut capacity planning model with overlapping," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 38(2), pages 335-364, March.
    39. T Wauters & K Verbeeck & G Vanden Berghe & P De Causmaecker, 2011. "Learning agents for the multi-mode project scheduling problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(2), pages 281-290, February.
    40. Xiao, Jing & Wu, Zhou & Hong, Xi-Xi & Tang, Jian-Chao & Tang, Yong, 2016. "Integration of electromagnetism with multi-objective evolutionary algorithms for RCPSP," European Journal of Operational Research, Elsevier, vol. 251(1), pages 22-35.
    41. Sönke Hartmann, 2015. "Time-Varying Resource Requirements and Capacities," International Handbooks on Information Systems, in: Christoph Schwindt & Jürgen Zimmermann (ed.), Handbook on Project Management and Scheduling Vol.1, edition 127, chapter 0, pages 163-176, Springer.
    42. Fündeling, C.-U. & Trautmann, N., 2010. "A priority-rule method for project scheduling with work-content constraints," European Journal of Operational Research, Elsevier, vol. 203(3), pages 568-574, June.
    43. Savio B. Rodrigues & Denise S. Yamashita, 2015. "Exact Methods for the Resource Availability Cost Problem," International Handbooks on Information Systems, in: Christoph Schwindt & Jürgen Zimmermann (ed.), Handbook on Project Management and Scheduling Vol.1, edition 127, chapter 0, pages 319-338, Springer.
    44. Vanhoucke, Mario & Coelho, José, 2016. "An approach using SAT solvers for the RCPSP with logical constraints," European Journal of Operational Research, Elsevier, vol. 249(2), pages 577-591.
    45. Alessandro Hill & Eduardo Lalla-Ruiz & Stefan Voß & Marcos Goycoolea, 2019. "A multi-mode resource-constrained project scheduling reformulation for the waterway ship scheduling problem," Journal of Scheduling, Springer, vol. 22(2), pages 173-182, April.
    46. Tritschler, Martin & Naber, Anulark & Kolisch, Rainer, 2017. "A hybrid metaheuristic for resource-constrained project scheduling with flexible resource profiles," European Journal of Operational Research, Elsevier, vol. 262(1), pages 262-273.
    47. Kai Watermeyer & Jürgen Zimmermann, 2020. "A branch-and-bound procedure for the resource-constrained project scheduling problem with partially renewable resources and general temporal constraints," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 42(2), pages 427-460, June.
    48. Adhau, Sunil & Mittal, M.L. & Mittal, Abhinav, 2013. "A multi-agent system for decentralized multi-project scheduling with resource transfers," International Journal of Production Economics, Elsevier, vol. 146(2), pages 646-661.
    49. Herroelen, Willy & Leus, Roel, 2005. "Project scheduling under uncertainty: Survey and research potentials," European Journal of Operational Research, Elsevier, vol. 165(2), pages 289-306, September.
    50. Servranckx, Tom & Vanhoucke, Mario, 2019. "A tabu search procedure for the resource-constrained project scheduling problem with alternative subgraphs," European Journal of Operational Research, Elsevier, vol. 273(3), pages 841-860.
    51. Patrick Gerhards & Christian Stürck, 2018. "A Hybrid Metaheuristic for the Multi-mode Resource Investment Problem with Tardiness Penalty," Operations Research Proceedings, in: Andreas Fink & Armin Fügenschuh & Martin Josef Geiger (ed.), Operations Research Proceedings 2016, pages 515-520, Springer.
    52. Hartmann, Sönke & Kolisch, R., 2000. "Experimental evaluation of state-of-the-art heuristics for the resource-constrained project scheduling problem," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 11180, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    53. Hartmann, Sönke & Briskorn, Dirk, 2010. "A survey of variants and extensions of the resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 207(1), pages 1-14, November.
    54. Rodrigues, Sávio B. & Yamashita, Denise S., 2010. "An exact algorithm for minimizing resource availability costs in project scheduling," European Journal of Operational Research, Elsevier, vol. 206(3), pages 562-568, November.
    55. Quintanilla, Sacramento & Pérez, Ángeles & Lino, Pilar & Valls, Vicente, 2012. "Time and work generalised precedence relationships in project scheduling with pre-emption: An application to the management of Service Centres," European Journal of Operational Research, Elsevier, vol. 219(1), pages 59-72.
    56. Julia Rieck & Jürgen Zimmermann, 2015. "Exact Methods for Resource Leveling Problems," International Handbooks on Information Systems, in: Christoph Schwindt & Jürgen Zimmermann (ed.), Handbook on Project Management and Scheduling Vol.1, edition 127, chapter 0, pages 361-387, Springer.
    57. Alexander Schnell & Richard F. Hartl, 2016. "On the efficient modeling and solution of the multi-mode resource-constrained project scheduling problem with generalized precedence relations," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 38(2), pages 283-303, March.
    58. Brucker, Peter & Drexl, Andreas & Mohring, Rolf & Neumann, Klaus & Pesch, Erwin, 1999. "Resource-constrained project scheduling: Notation, classification, models, and methods," European Journal of Operational Research, Elsevier, vol. 112(1), pages 3-41, January.
    59. Carlos Montoya & Odile Bellenguez-Morineau & Eric Pinson & David Rivreau, 2015. "Integrated Column Generation and Lagrangian Relaxation Approach for the Multi-Skill Project Scheduling Problem," International Handbooks on Information Systems, in: Christoph Schwindt & Jürgen Zimmermann (ed.), Handbook on Project Management and Scheduling Vol.1, edition 127, chapter 0, pages 565-586, Springer.
    60. Mónica A. Santos & Anabela P. Tereso, 2014. "Multimode Resource-Constrained Project Scheduling Problem Including Multiskill Labor (MRCPSP-MS) Model and a Solution Method," International Series in Operations Research & Management Science, in: P. Simin Pulat & Subhash C. Sarin & Reha Uzsoy (ed.), Essays in Production, Project Planning and Scheduling, edition 127, chapter 11, pages 249-275, Springer.
    61. Zdeněk Hanzálek & Přemysl Šůcha, 2017. "Time symmetry of resource constrained project scheduling with general temporal constraints and take-give resources," Annals of Operations Research, Springer, vol. 248(1), pages 209-237, January.
    62. Knust, Sigrid, 2010. "Scheduling non-professional table-tennis leagues," European Journal of Operational Research, Elsevier, vol. 200(2), pages 358-367, January.
    63. Philippe Lacomme & Aziz Moukrim & Alain Quilliot & Marina Vinot, 2019. "Integration of routing into a resource-constrained project scheduling problem," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 7(4), pages 421-464, December.
    64. Jens Poppenborg & Sigrid Knust, 2016. "A flow-based tabu search algorithm for the RCPSP with transfer times," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 38(2), pages 305-334, March.
    65. Rainer Kolisch & Christian Heimerl, 2012. "An efficient metaheuristic for integrated scheduling and staffing IT projects based on a generalized minimum cost flow network," Naval Research Logistics (NRL), John Wiley & Sons, vol. 59(2), pages 111-127, March.
    66. Beşikci, Umut & Bilge, Ümit & Ulusoy, Gündüz, 2015. "Multi-mode resource constrained multi-project scheduling and resource portfolio problem," European Journal of Operational Research, Elsevier, vol. 240(1), pages 22-31.
    67. Schnell, Alexander & Hartl, Richard F., 2017. "On the generalization of constraint programming and boolean satisfiability solving techniques to schedule a resource-constrained project consisting of multi-mode jobs," Operations Research Perspectives, Elsevier, vol. 4(C), pages 1-11.
    68. Pieter Leyman & Mario Vanhoucke, 2015. "A new scheduling technique for the resource–constrained project scheduling problem with discounted cash flows," International Journal of Production Research, Taylor & Francis Journals, vol. 53(9), pages 2771-2786, May.
    69. Christoph Schwindt & Tobias Paetz, 2015. "Continuous Preemption Problems," International Handbooks on Information Systems, in: Christoph Schwindt & Jürgen Zimmermann (ed.), Handbook on Project Management and Scheduling Vol.1, edition 127, chapter 0, pages 251-295, Springer.
    70. L Florez & D Castro-Lacouture & A L Medaglia, 2013. "Sustainable workforce scheduling in construction program management," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 64(8), pages 1169-1181, August.
    71. Kadri, Roubila Lilia & Boctor, Fayez F., 2018. "An efficient genetic algorithm to solve the resource-constrained project scheduling problem with transfer times: The single mode case," European Journal of Operational Research, Elsevier, vol. 265(2), pages 454-462.
    72. Rieck, Julia & Zimmermann, Jürgen & Gather, Thorsten, 2012. "Mixed-integer linear programming for resource leveling problems," European Journal of Operational Research, Elsevier, vol. 221(1), pages 27-37.
    73. Andreas Schutt & Thibaut Feydy & Peter J. Stuckey & Mark G. Wallace, 2015. "A Satisfiability Solving Approach," International Handbooks on Information Systems, in: Christoph Schwindt & Jürgen Zimmermann (ed.), Handbook on Project Management and Scheduling Vol.1, edition 127, chapter 0, pages 135-160, Springer.
    74. Peteghem, Vincent Van & Vanhoucke, Mario, 2010. "A genetic algorithm for the preemptive and non-preemptive multi-mode resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 201(2), pages 409-418, March.
    75. Francisco Ballestín & Rosa Blanco, 2015. "Theoretical and Practical Fundamentals," International Handbooks on Information Systems, in: Christoph Schwindt & Jürgen Zimmermann (ed.), Handbook on Project Management and Scheduling Vol.1, edition 127, chapter 0, pages 411-427, Springer.
    76. Vincent Peteghem & Mario Vanhoucke, 2015. "Heuristic Methods for the Resource Availability Cost Problem," International Handbooks on Information Systems, in: Christoph Schwindt & Jürgen Zimmermann (ed.), Handbook on Project Management and Scheduling Vol.1, edition 127, chapter 0, pages 339-359, Springer.
    77. Riise, Atle & Mannino, Carlo & Lamorgese, Leonardo, 2016. "Recursive logic-based Benders’ decomposition for multi-mode outpatient scheduling," European Journal of Operational Research, Elsevier, vol. 255(3), pages 719-728.
    78. Li, Haitao & Womer, Keith, 2012. "Optimizing the supply chain configuration for make-to-order manufacturing," European Journal of Operational Research, Elsevier, vol. 221(1), pages 118-128.
    79. Öncü Hazır & Mohamed Haouari & Erdal Erel, 2015. "Robust Optimization for the Discrete Time-Cost Tradeoff Problem with Cost Uncertainty," International Handbooks on Information Systems, in: Christoph Schwindt & Jürgen Zimmermann (ed.), Handbook on Project Management and Scheduling Vol. 2, edition 127, chapter 0, pages 865-874, Springer.
    80. Hongbo Li & Li Xiong & Yinbin Liu & Haitao Li, 2018. "An effective genetic algorithm for the resource levelling problem with generalised precedence relations," International Journal of Production Research, Taylor & Francis Journals, vol. 56(5), pages 2054-2075, March.
    81. Cédric Verbeeck & Vincent Peteghem & Mario Vanhoucke & Pieter Vansteenwegen & El-Houssaine Aghezzaf, 2017. "A metaheuristic solution approach for the time-constrained project scheduling problem," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(2), pages 353-371, March.
    82. Nima Zoraghi & Aria Shahsavar & Babak Abbasi & Vincent Peteghem, 2017. "Multi-mode resource-constrained project scheduling problem with material ordering under bonus–penalty policies," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(1), pages 49-79, April.
    83. Elloumi, Sonda & Fortemps, Philippe, 2010. "A hybrid rank-based evolutionary algorithm applied to multi-mode resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 205(1), pages 31-41, August.
    84. Kolisch, Rainer & Hartmann, Sönke, 1999. "Heuristic algorithms for the resource-constrained project scheduling problem: classification and computational analysis," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 10966, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    85. de Azevedo, Guilherme Henrique Ismael & Pessoa, Artur Alves & Subramanian, Anand, 2021. "A satisfiability and workload-based exact method for the resource constrained project scheduling problem with generalized precedence constraints," European Journal of Operational Research, Elsevier, vol. 289(3), pages 809-824.
    86. Pellerin, Robert & Perrier, Nathalie & Berthaut, François, 2020. "A survey of hybrid metaheuristics for the resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 280(2), pages 395-416.
    87. Weglarz, Jan & Józefowska, Joanna & Mika, Marek & Waligóra, Grzegorz, 2011. "Project scheduling with finite or infinite number of activity processing modes - A survey," European Journal of Operational Research, Elsevier, vol. 208(3), pages 177-205, February.
    88. Jan-Hendrik Bartels & Thorsten Gather & Jürgen Zimmermann, 2011. "Dismantling of nuclear power plants at optimal NPV," Annals of Operations Research, Springer, vol. 186(1), pages 407-427, June.
    89. Cheikh Dhib & Ameur Soukhal & Emmanuel Néron, 2015. "Mixed-Integer Linear Programming Formulation and Priority-Rule Methods for a Preemptive Project Staffing and Scheduling Problem," International Handbooks on Information Systems, in: Christoph Schwindt & Jürgen Zimmermann (ed.), Handbook on Project Management and Scheduling Vol.1, edition 127, chapter 0, pages 603-617, Springer.
    90. Belaïd Aouni & Gilles d’Avignon & Michel Gagnon, 2015. "Goal Programming for Multi-Objective Resource-Constrained Project Scheduling," International Handbooks on Information Systems, in: Christoph Schwindt & Jürgen Zimmermann (ed.), Handbook on Project Management and Scheduling Vol.1, edition 127, chapter 0, pages 429-442, Springer.
    91. Kolisch, Rainer & Hartmann, Sonke, 2006. "Experimental investigation of heuristics for resource-constrained project scheduling: An update," European Journal of Operational Research, Elsevier, vol. 174(1), pages 23-37, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pejman Peykani & Jafar Gheidar-Kheljani & Sheida Shahabadi & Seyyed Hassan Ghodsypour & Mojtaba Nouri, 2023. "A two-phase resource-constrained project scheduling approach for design and development of complex product systems," Operational Research, Springer, vol. 23(1), pages 1-25, March.
    2. He, Yukang & Jia, Tao & Zheng, Weibo, 2023. "Tabu search for dedicated resource-constrained multiproject scheduling to minimise the maximal cash flow gap under uncertainty," European Journal of Operational Research, Elsevier, vol. 310(1), pages 34-52.
    3. Xumai Qi & Dongdong Zhang & Hu Lu & Rupeng Li, 2023. "A GA-Based Scheduling Method for Civil Aircraft Distributed Production with Material Inventory Replenishment Consideration," Mathematics, MDPI, vol. 11(14), pages 1-25, July.
    4. Liu, Ying & Zhou, Jing & Lim, Andrew & Hu, Qian, 2023. "A tree search heuristic for the resource constrained project scheduling problem with transfer times," European Journal of Operational Research, Elsevier, vol. 304(3), pages 939-951.
    5. Zuo, Fei & Zio, Enrico & Xu, Yue, 2023. "Bi-objective optimization of the scheduling of risk-related resources for risk response," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    6. Bredael, Dries & Vanhoucke, Mario, 2023. "Multi-project scheduling: A benchmark analysis of metaheuristic algorithms on various optimisation criteria and due dates," European Journal of Operational Research, Elsevier, vol. 308(1), pages 54-75.
    7. Park, Jongyoon & Han, Jinil & Lee, Kyungsik, 2022. "Integer Optimization Model and Algorithm for the Stem Cell Culturing Problem," Omega, Elsevier, vol. 108(C).
    8. Alessandro Hill & Andrea J. Brickey & Italo Cipriano & Marcos Goycoolea & Alexandra Newman, 2022. "Optimization Strategies for Resource-Constrained Project Scheduling Problems in Underground Mining," INFORMS Journal on Computing, INFORMS, vol. 34(6), pages 3042-3058, November.
    9. Gómez Sánchez, Mariam & Lalla-Ruiz, Eduardo & Fernández Gil, Alejandro & Castro, Carlos & Voß, Stefan, 2023. "Resource-constrained multi-project scheduling problem: A survey," European Journal of Operational Research, Elsevier, vol. 309(3), pages 958-976.
    10. Schulze, Philipp & Scholl, Armin & Walter, Rico, 2024. "R-SALSA: A branch, bound, and remember algorithm for the workload smoothing problem on simple assembly lines," European Journal of Operational Research, Elsevier, vol. 312(1), pages 38-55.
    11. Sonja Rosenberg & Sandra Huster & Sabri Baazouzi & Simon Glöser-Chahoud & Anwar Al Assadi & Frank Schultmann, 2022. "Field Study and Multimethod Analysis of an EV Battery System Disassembly," Energies, MDPI, vol. 15(15), pages 1-35, July.
    12. Zhao, Mingxuan & Zhou, Jian & Wang, Ke & Pantelous, Athanasios A., 2023. "Project scheduling problem with fuzzy activity durations: A novel operational law based solution framework," European Journal of Operational Research, Elsevier, vol. 306(2), pages 519-534.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Patrick Gerhards, 2020. "The multi-mode resource investment problem: a benchmark library and a computational study of lower and upper bounds," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 42(4), pages 901-933, December.
    2. He, Yukang & Jia, Tao & Zheng, Weibo, 2023. "Tabu search for dedicated resource-constrained multiproject scheduling to minimise the maximal cash flow gap under uncertainty," European Journal of Operational Research, Elsevier, vol. 310(1), pages 34-52.
    3. Ben Issa, Samer & Patterson, Raymond A. & Tu, Yiliu, 2021. "Solving resource-constrained multi-project environment under different activity assumptions," International Journal of Production Economics, Elsevier, vol. 232(C).
    4. Kellenbrink, Carolin & Helber, Stefan, 2015. "Scheduling resource-constrained projects with a flexible project structure," European Journal of Operational Research, Elsevier, vol. 246(2), pages 379-391.
    5. Weglarz, Jan & Józefowska, Joanna & Mika, Marek & Waligóra, Grzegorz, 2011. "Project scheduling with finite or infinite number of activity processing modes - A survey," European Journal of Operational Research, Elsevier, vol. 208(3), pages 177-205, February.
    6. Van Peteghem, Vincent & Vanhoucke, Mario, 2014. "An experimental investigation of metaheuristics for the multi-mode resource-constrained project scheduling problem on new dataset instances," European Journal of Operational Research, Elsevier, vol. 235(1), pages 62-72.
    7. André Schnabel & Carolin Kellenbrink & Stefan Helber, 2018. "Profit-oriented scheduling of resource-constrained projects with flexible capacity constraints," Business Research, Springer;German Academic Association for Business Research, vol. 11(2), pages 329-356, September.
    8. Gómez Sánchez, Mariam & Lalla-Ruiz, Eduardo & Fernández Gil, Alejandro & Castro, Carlos & Voß, Stefan, 2023. "Resource-constrained multi-project scheduling problem: A survey," European Journal of Operational Research, Elsevier, vol. 309(3), pages 958-976.
    9. Servranckx, Tom & Vanhoucke, Mario, 2019. "A tabu search procedure for the resource-constrained project scheduling problem with alternative subgraphs," European Journal of Operational Research, Elsevier, vol. 273(3), pages 841-860.
    10. Felix Hübner & Patrick Gerhards & Christian Stürck & Rebekka Volk, 2021. "Solving the nuclear dismantling project scheduling problem by combining mixed-integer and constraint programming techniques and metaheuristics," Journal of Scheduling, Springer, vol. 24(3), pages 269-290, June.
    11. Luis F. Machado-Domínguez & Carlos D. Paternina-Arboleda & Jorge I. Vélez & Agustin Barrios-Sarmiento, 2021. "A memetic algorithm to address the multi-node resource-constrained project scheduling problem," Journal of Scheduling, Springer, vol. 24(4), pages 413-429, August.
    12. Hongbo Li & Linwen Zheng & Hanyu Zhu, 2023. "Resource leveling in projects with flexible structures," Annals of Operations Research, Springer, vol. 321(1), pages 311-342, February.
    13. Luise-Sophie Hoffmann & Carolin Kellenbrink & Stefan Helber, 2020. "Simultaneous structuring and scheduling of multiple projects with flexible project structures," Journal of Business Economics, Springer, vol. 90(5), pages 679-711, June.
    14. Cédric Verbeeck & Vincent Peteghem & Mario Vanhoucke & Pieter Vansteenwegen & El-Houssaine Aghezzaf, 2017. "A metaheuristic solution approach for the time-constrained project scheduling problem," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(2), pages 353-371, March.
    15. Hartmann, Sönke & Briskorn, Dirk, 2010. "A survey of variants and extensions of the resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 207(1), pages 1-14, November.
    16. Alfredo S. Ramos & Pablo A. Miranda-Gonzalez & Samuel Nucamendi-Guillén & Elias Olivares-Benitez, 2023. "A Formulation for the Stochastic Multi-Mode Resource-Constrained Project Scheduling Problem Solved with a Multi-Start Iterated Local Search Metaheuristic," Mathematics, MDPI, vol. 11(2), pages 1-25, January.
    17. Song, Jie & Martens, Annelies & Vanhoucke, Mario, 2021. "Using Schedule Risk Analysis with resource constraints for project control," European Journal of Operational Research, Elsevier, vol. 288(3), pages 736-752.
    18. F. Perez & T. Gomez, 2016. "Multiobjective project portfolio selection with fuzzy constraints," Annals of Operations Research, Springer, vol. 245(1), pages 7-29, October.
    19. Geiger, Martin Josef, 2017. "A multi-threaded local search algorithm and computer implementation for the multi-mode, resource-constrained multi-project scheduling problem," European Journal of Operational Research, Elsevier, vol. 256(3), pages 729-741.
    20. Messelis, Tommy & De Causmaecker, Patrick, 2014. "An automatic algorithm selection approach for the multi-mode resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 233(3), pages 511-528.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:297:y:2022:i:1:p:1-14. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.