IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v146y2013i2p646-661.html
   My bibliography  Save this article

A multi-agent system for decentralized multi-project scheduling with resource transfers

Author

Listed:
  • Adhau, Sunil
  • Mittal, M.L.
  • Mittal, Abhinav

Abstract

The companies dealing with multiple projects are geographically distributed at different locations. These projects require local (always available to the concerned project) and global (shared among the projects) resources that are available in limited quantity. The global resources are generally required to be transferred physically among the projects, consuming significant amounts of both time and cost. The existing multi-agent systems for decentralized resource constrained multi-project scheduling problem (DRCMPSP) do not consider the resource transfer time and related cost for execution and control. We introduce DRCMPSP-RT that explicitly considers the transfer of shared global resources. This paper proposes a novel distributed multi-agent system using auctions based negotiation (DMAS/RIA) approach for the resource intervals and allocating multiple different types of shared resources amongst multiple competing projects.

Suggested Citation

  • Adhau, Sunil & Mittal, M.L. & Mittal, Abhinav, 2013. "A multi-agent system for decentralized multi-project scheduling with resource transfers," International Journal of Production Economics, Elsevier, vol. 146(2), pages 646-661.
  • Handle: RePEc:eee:proeco:v:146:y:2013:i:2:p:646-661
    DOI: 10.1016/j.ijpe.2013.08.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S092552731300368X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijpe.2013.08.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A. Alan B. Pritsker & Lawrence J. Waiters & Philip M. Wolfe, 1969. "Multiproject Scheduling with Limited Resources: A Zero-One Programming Approach," Management Science, INFORMS, vol. 16(1), pages 93-108, September.
    2. Krüger, Doreen & Scholl, Armin, 2009. "A heuristic solution framework for the resource constrained (multi-)project scheduling problem with sequence-dependent transfer times," European Journal of Operational Research, Elsevier, vol. 197(2), pages 492-508, September.
    3. Allesandro Agnetis & Pitu B. Mirchandani & Dario Pacciarelli & Andrea Pacifici, 2004. "Scheduling Problems with Two Competing Agents," Operations Research, INFORMS, vol. 52(2), pages 229-242, April.
    4. Kolisch, Rainer, 1996. "Serial and parallel resource-constrained project scheduling methods revisited: Theory and computation," European Journal of Operational Research, Elsevier, vol. 90(2), pages 320-333, April.
    5. I. Kurtulus & E. W. Davis, 1982. "Multi-Project Scheduling: Categorization of Heuristic Rules Performance," Management Science, INFORMS, vol. 28(2), pages 161-172, February.
    6. Wellman, Michael P. & Walsh, William E. & Wurman, Peter R. & MacKie-Mason, Jeffrey K., 2001. "Auction Protocols for Decentralized Scheduling," Games and Economic Behavior, Elsevier, vol. 35(1-2), pages 271-303, April.
    7. Elalouf, Amir & Levner, Eugene & Cheng, T.C.E., 2013. "Routing and dispatching of multiple mobile agents in integratedenterprises," International Journal of Production Economics, Elsevier, vol. 145(1), pages 96-106.
    8. Bearzotti, Lorena A. & Salomone, Enrique & Chiotti, Omar J., 2012. "An autonomous multi-agent approach to supply chain event management," International Journal of Production Economics, Elsevier, vol. 135(1), pages 468-478.
    9. Giuseppe Confessore & Stefano Giordani & Silvia Rismondo, 2007. "A market-based multi-agent system model for decentralized multi-project scheduling," Annals of Operations Research, Springer, vol. 150(1), pages 115-135, March.
    10. M.L. Mittal & Arun Kanda, 2009. "Scheduling of multiple projects with resource transfers," International Journal of Mathematics in Operational Research, Inderscience Enterprises Ltd, vol. 1(3), pages 303-325.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ben Issa, Samer & Patterson, Raymond A. & Tu, Yiliu, 2021. "Solving resource-constrained multi-project environment under different activity assumptions," International Journal of Production Economics, Elsevier, vol. 232(C).
    2. Hartmann, Sönke & Briskorn, Dirk, 2022. "An updated survey of variants and extensions of the resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 297(1), pages 1-14.
    3. Li, Xingyu & Epureanu, Bogdan I., 2020. "An agent-based approach to optimizing modular vehicle fleet operation," International Journal of Production Economics, Elsevier, vol. 228(C).
    4. He, Yukang & Jia, Tao & Zheng, Weibo, 2023. "Tabu search for dedicated resource-constrained multiproject scheduling to minimise the maximal cash flow gap under uncertainty," European Journal of Operational Research, Elsevier, vol. 310(1), pages 34-52.
    5. Liu, Ying & Zhou, Jing & Lim, Andrew & Hu, Qian, 2023. "A tree search heuristic for the resource constrained project scheduling problem with transfer times," European Journal of Operational Research, Elsevier, vol. 304(3), pages 939-951.
    6. Yinfeng Xu & Rongteng Zhi & Feifeng Zheng & Ming Liu, 2022. "Competitive algorithm for scheduling of sharing machines with rental discount," Journal of Combinatorial Optimization, Springer, vol. 44(1), pages 414-434, August.
    7. Nadia Chaudry & Ingunn Vermedal & Kjetil Fagerholt & Maria Fleischer Fauske & Magnus Stålhane, 2020. "A decomposition solution approach to the troops-to-tasks assignment in military peacekeeping operations," The Journal of Defense Modeling and Simulation, , vol. 17(4), pages 357-371, October.
    8. Fink, Andreas & Gerhards, Patrick, 2021. "Negotiation mechanisms for the multi-agent multi-mode resource investment problem," European Journal of Operational Research, Elsevier, vol. 295(1), pages 261-274.
    9. Gómez Sánchez, Mariam & Lalla-Ruiz, Eduardo & Fernández Gil, Alejandro & Castro, Carlos & Voß, Stefan, 2023. "Resource-constrained multi-project scheduling problem: A survey," European Journal of Operational Research, Elsevier, vol. 309(3), pages 958-976.
    10. Wuliang Peng & Jiali lin & Jingwen Zhang & Liangwei Chen, 2022. "A bi-objective hierarchical program scheduling problem and its solution based on NSGA-III," Annals of Operations Research, Springer, vol. 308(1), pages 389-414, January.
    11. Bredael, Dries & Vanhoucke, Mario, 2023. "Multi-project scheduling: A benchmark analysis of metaheuristic algorithms on various optimisation criteria and due dates," European Journal of Operational Research, Elsevier, vol. 308(1), pages 54-75.
    12. Becker, Till & Illigen, Christoph & McKelvey, Bill & Hülsmann, Michael & Windt, Katja, 2016. "Using an agent-based neural-network computational model to improve product routing in a logistics facility," International Journal of Production Economics, Elsevier, vol. 174(C), pages 156-167.
    13. Rob Eynde & Mario Vanhoucke, 2020. "Resource-constrained multi-project scheduling: benchmark datasets and decoupled scheduling," Journal of Scheduling, Springer, vol. 23(3), pages 301-325, June.
    14. Mohammad Rostami & Morteza Bagherpour, 2020. "A lagrangian relaxation algorithm for facility location of resource-constrained decentralized multi-project scheduling problems," Operational Research, Springer, vol. 20(2), pages 857-897, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Browning, Tyson R. & Yassine, Ali A., 2010. "Resource-constrained multi-project scheduling: Priority rule performance revisited," International Journal of Production Economics, Elsevier, vol. 126(2), pages 212-228, August.
    2. Anıl Can & Gündüz Ulusoy, 2014. "Multi-project scheduling with two-stage decomposition," Annals of Operations Research, Springer, vol. 217(1), pages 95-116, June.
    3. Gómez Sánchez, Mariam & Lalla-Ruiz, Eduardo & Fernández Gil, Alejandro & Castro, Carlos & Voß, Stefan, 2023. "Resource-constrained multi-project scheduling problem: A survey," European Journal of Operational Research, Elsevier, vol. 309(3), pages 958-976.
    4. Bredael, Dries & Vanhoucke, Mario, 2023. "Multi-project scheduling: A benchmark analysis of metaheuristic algorithms on various optimisation criteria and due dates," European Journal of Operational Research, Elsevier, vol. 308(1), pages 54-75.
    5. Schirmer, Andreas & Riesenberg, Sven, 1997. "Parameterized heuristics for project scheduling: Biased random sampling methods," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 456, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    6. Hartmann, Sönke & Briskorn, Dirk, 2010. "A survey of variants and extensions of the resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 207(1), pages 1-14, November.
    7. Van Eynde, Rob & Vanhoucke, Mario, 2022. "New summary measures and datasets for the multi-project scheduling problem," European Journal of Operational Research, Elsevier, vol. 299(3), pages 853-868.
    8. Ben Issa, Samer & Patterson, Raymond A. & Tu, Yiliu, 2021. "Solving resource-constrained multi-project environment under different activity assumptions," International Journal of Production Economics, Elsevier, vol. 232(C).
    9. Rob Eynde & Mario Vanhoucke, 2020. "Resource-constrained multi-project scheduling: benchmark datasets and decoupled scheduling," Journal of Scheduling, Springer, vol. 23(3), pages 301-325, June.
    10. Kadri, Roubila Lilia & Boctor, Fayez F., 2018. "An efficient genetic algorithm to solve the resource-constrained project scheduling problem with transfer times: The single mode case," European Journal of Operational Research, Elsevier, vol. 265(2), pages 454-462.
    11. Salewski, Frank & Schirmer, Andreas & Drexl, Andreas, 1996. "Project Scheduling under Resource and Mode Identity Constraints. Part II: An Application to Audit-Staff Scheduling," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 388, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    12. Philippe Lacomme & Aziz Moukrim & Alain Quilliot & Marina Vinot, 2019. "Integration of routing into a resource-constrained project scheduling problem," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 7(4), pages 421-464, December.
    13. Naber, Anulark & Kolisch, Rainer, 2014. "MIP models for resource-constrained project scheduling with flexible resource profiles," European Journal of Operational Research, Elsevier, vol. 239(2), pages 335-348.
    14. Goel, Asvin & Meisel, Frank, 2013. "Workforce routing and scheduling for electricity network maintenance with downtime minimization," European Journal of Operational Research, Elsevier, vol. 231(1), pages 210-228.
    15. Gonçalves, J.F. & Mendes, J.J.M. & Resende, M.G.C., 2008. "A genetic algorithm for the resource constrained multi-project scheduling problem," European Journal of Operational Research, Elsevier, vol. 189(3), pages 1171-1190, September.
    16. Kolisch, Rainer, 1994. "Serial and parallel resource-constrained projekt scheduling methodes revisited: Theory and computation," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 344, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    17. Agnetis, Alessandro & Chen, Bo & Nicosia, Gaia & Pacifici, Andrea, 2019. "Price of fairness in two-agent single-machine scheduling problems," European Journal of Operational Research, Elsevier, vol. 276(1), pages 79-87.
    18. Yaghoubi, Saeed & Noori, Siamak & Azaron, Amir & Fynes, Brian, 2015. "Resource allocation in multi-class dynamic PERT networks with finite capacity," European Journal of Operational Research, Elsevier, vol. 247(3), pages 879-894.
    19. Krüger, Doreen & Scholl, Armin, 2009. "A heuristic solution framework for the resource constrained (multi-)project scheduling problem with sequence-dependent transfer times," European Journal of Operational Research, Elsevier, vol. 197(2), pages 492-508, September.
    20. Wuliang Peng & Jiali lin & Jingwen Zhang & Liangwei Chen, 2022. "A bi-objective hierarchical program scheduling problem and its solution based on NSGA-III," Annals of Operations Research, Springer, vol. 308(1), pages 389-414, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:146:y:2013:i:2:p:646-661. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.