IDEAS home Printed from https://ideas.repec.org/a/spr/busres/v11y2018i2d10.1007_s40685-018-0063-5.html

Some searches may not work properly. We apologize for the inconvenience.

   My bibliography  Save this article

Profit-oriented scheduling of resource-constrained projects with flexible capacity constraints

Author

Listed:
  • André Schnabel

    (Leibniz Universität Hannover)

  • Carolin Kellenbrink

    (Leibniz Universität Hannover)

  • Stefan Helber

    (Leibniz Universität Hannover)

Abstract

We consider a novel generalization of the resource-constrained project scheduling problem (RCPSP). Unlike many established approaches for the RCPSP that aim to minimize the makespan of the project for given static capacity constraints, we consider the important real-life aspect that capacity constraints can often be systematically modified by temporarily assigning costly additional production resources or using overtime. We, furthermore, assume that the revenue of the project decreases as its makespan increases and try to find a schedule with a profit-maximizing makespan. Like the RCPSP, the problem is $$\mathcal {NP}$$ NP -hard, but unlike the RCPSP, it turns out that an optimal schedule does not have to be among the set of so-called active schedules. Scheduling such a project is a formidable task, both from a practical and a theoretical perspective. We develop, describe, and evaluate alternative solution encodings and schedule decoding mechanisms to solve this problem within a genetic algorithm framework and we compare the solutions obtained to both optimal reference values and the results of a commercial local search solver called LocalSolver.

Suggested Citation

  • André Schnabel & Carolin Kellenbrink & Stefan Helber, 2018. "Profit-oriented scheduling of resource-constrained projects with flexible capacity constraints," Business Research, Springer;German Academic Association for Business Research, vol. 11(2), pages 329-356, September.
  • Handle: RePEc:spr:busres:v:11:y:2018:i:2:d:10.1007_s40685-018-0063-5
    DOI: 10.1007/s40685-018-0063-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s40685-018-0063-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1007/s40685-018-0063-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. A. Alan B. Pritsker & Lawrence J. Waiters & Philip M. Wolfe, 1969. "Multiproject Scheduling with Limited Resources: A Zero-One Programming Approach," Management Science, INFORMS, vol. 16(1), pages 93-108, September.
    2. Thomas J. Hindelang & John F. Muth, 1979. "A Dynamic Programming Algorithm for Decision CPM Networks," Operations Research, INFORMS, vol. 27(2), pages 225-241, April.
    3. Deckro, RF & Hebert, JE, 1989. "Resource constrained project crashing," Omega, Elsevier, vol. 17(1), pages 69-79.
    4. Carolin Kellenbrink & Stefan Helber, 2016. "Quality- and profit-oriented scheduling of resource-constrained projects with flexible project structure via a genetic algorithm," European Journal of Industrial Engineering, Inderscience Enterprises Ltd, vol. 10(5), pages 574-595.
    5. Kellenbrink, Carolin & Helber, Stefan, 2015. "Scheduling resource-constrained projects with a flexible project structure," European Journal of Operational Research, Elsevier, vol. 246(2), pages 379-391.
    6. Christian Artigues & Oumar Koné & Pierre Lopez & Marcel Mongeau, 2015. "Mixed-Integer Linear Programming Formulations," International Handbooks on Information Systems, in: Christoph Schwindt & Jürgen Zimmermann (ed.), Handbook on Project Management and Scheduling Vol.1, edition 127, chapter 0, pages 17-41, Springer.
    7. Neumann, K. & Zimmermann, J., 1999. "Resource levelling for projects with schedule-dependent time windows," European Journal of Operational Research, Elsevier, vol. 117(3), pages 591-605, September.
    8. K. Neumann & H. Nübel & C. Schwindt, 2000. "Active and stable project scheduling," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 52(3), pages 441-465, December.
    9. Julia Rieck & Jürgen Zimmermann, 2015. "Exact Methods for Resource Leveling Problems," International Handbooks on Information Systems, in: Christoph Schwindt & Jürgen Zimmermann (ed.), Handbook on Project Management and Scheduling Vol.1, edition 127, chapter 0, pages 361-387, Springer.
    10. Brucker, Peter & Drexl, Andreas & Mohring, Rolf & Neumann, Klaus & Pesch, Erwin, 1999. "Resource-constrained project scheduling: Notation, classification, models, and methods," European Journal of Operational Research, Elsevier, vol. 112(1), pages 3-41, January.
    11. Rainer Kolisch & Andreas Drexl, 1996. "Adaptive search for solving hard project scheduling problems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 43(1), pages 23-40, February.
    12. Kolisch, Rainer & Schwindt, Christoph & Sprecher, Arno, 1999. "Benchmark instances for project scheduling problems," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 9500, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    13. Kolisch, Rainer & Sprecher, Arno, 1996. "PSPLIB - a project scheduling problem library," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 396, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    14. Kolisch, Rainer & Hartmann, Sönke, 1999. "Heuristic algorithms for the resource-constrained project scheduling problem: classification and computational analysis," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 10966, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    15. A Drexl & A Kimms, 2001. "Optimization guided lower and upper bounds for the resource investment problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 52(3), pages 340-351, March.
    16. Kolisch, Rainer & Hartmann, Sonke, 2006. "Experimental investigation of heuristics for resource-constrained project scheduling: An update," European Journal of Operational Research, Elsevier, vol. 174(1), pages 23-37, October.
    17. Kolisch, R. & Padman, R., 2001. "An integrated survey of deterministic project scheduling," Omega, Elsevier, vol. 29(3), pages 249-272, June.
    18. Valls, Vicente & Ballestin, Francisco & Quintanilla, Sacramento, 2008. "A hybrid genetic algorithm for the resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 185(2), pages 495-508, March.
    19. Valls, Vicente & Ballestin, Francisco & Quintanilla, Sacramento, 2005. "Justification and RCPSP: A technique that pays," European Journal of Operational Research, Elsevier, vol. 165(2), pages 375-386, September.
    20. Debels, Dieter & De Reyck, Bert & Leus, Roel & Vanhoucke, Mario, 2006. "A hybrid scatter search/electromagnetism meta-heuristic for project scheduling," European Journal of Operational Research, Elsevier, vol. 169(2), pages 638-653, March.
    21. Sönke Hartmann, 2015. "Time-Varying Resource Requirements and Capacities," International Handbooks on Information Systems, in: Christoph Schwindt & Jürgen Zimmermann (ed.), Handbook on Project Management and Scheduling Vol.1, edition 127, chapter 0, pages 163-176, Springer.
    22. Sönke Hartmann, 1998. "A competitive genetic algorithm for resource‐constrained project scheduling," Naval Research Logistics (NRL), John Wiley & Sons, vol. 45(7), pages 733-750, October.
    23. Hartmann, Sönke & Briskorn, Dirk, 2010. "A survey of variants and extensions of the resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 207(1), pages 1-14, November.
    24. Li, K. Y. & Willis, R. J., 1992. "An iterative scheduling technique for resource-constrained project scheduling," European Journal of Operational Research, Elsevier, vol. 56(3), pages 370-379, February.
    25. Francisco Ballestín & Rosa Blanco, 2015. "Theoretical and Practical Fundamentals," International Handbooks on Information Systems, in: Christoph Schwindt & Jürgen Zimmermann (ed.), Handbook on Project Management and Scheduling Vol.1, edition 127, chapter 0, pages 411-427, Springer.
    26. Pilar Tormos & Antonio Lova, 2001. "A Competitive Heuristic Solution Technique for Resource-Constrained Project Scheduling," Annals of Operations Research, Springer, vol. 102(1), pages 65-81, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hartmann, Sönke & Briskorn, Dirk, 2022. "An updated survey of variants and extensions of the resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 297(1), pages 1-14.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hartmann, Sönke & Briskorn, Dirk, 2022. "An updated survey of variants and extensions of the resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 297(1), pages 1-14.
    2. Kreter, Stefan & Rieck, Julia & Zimmermann, Jürgen, 2016. "Models and solution procedures for the resource-constrained project scheduling problem with general temporal constraints and calendars," European Journal of Operational Research, Elsevier, vol. 251(2), pages 387-403.
    3. Dieter Debels & Mario Vanhoucke, 2007. "A Decomposition-Based Genetic Algorithm for the Resource-Constrained Project-Scheduling Problem," Operations Research, INFORMS, vol. 55(3), pages 457-469, June.
    4. Xabier A. Martin & Rosa Herrero & Angel A. Juan & Javier Panadero, 2024. "An Agile Adaptive Biased-Randomized Discrete-Event Heuristic for the Resource-Constrained Project Scheduling Problem," Mathematics, MDPI, vol. 12(12), pages 1-21, June.
    5. Coelho, José & Vanhoucke, Mario, 2011. "Multi-mode resource-constrained project scheduling using RCPSP and SAT solvers," European Journal of Operational Research, Elsevier, vol. 213(1), pages 73-82, August.
    6. Sepehr Proon & Mingzhou Jin, 2011. "A genetic algorithm with neighborhood search for the resource‐constrained project scheduling problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 58(2), pages 73-82, March.
    7. Valls, Vicente & Ballestin, Francisco & Quintanilla, Sacramento, 2008. "A hybrid genetic algorithm for the resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 185(2), pages 495-508, March.
    8. Cédric Verbeeck & Vincent Peteghem & Mario Vanhoucke & Pieter Vansteenwegen & El-Houssaine Aghezzaf, 2017. "A metaheuristic solution approach for the time-constrained project scheduling problem," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(2), pages 353-371, March.
    9. Vanhoucke, Mario & Coelho, José, 2016. "An approach using SAT solvers for the RCPSP with logical constraints," European Journal of Operational Research, Elsevier, vol. 249(2), pages 577-591.
    10. Luise-Sophie Hoffmann & Carolin Kellenbrink & Stefan Helber, 2020. "Simultaneous structuring and scheduling of multiple projects with flexible project structures," Journal of Business Economics, Springer, vol. 90(5), pages 679-711, June.
    11. Peteghem, Vincent Van & Vanhoucke, Mario, 2010. "A genetic algorithm for the preemptive and non-preemptive multi-mode resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 201(2), pages 409-418, March.
    12. Kolisch, R. & Padman, R., 2001. "An integrated survey of deterministic project scheduling," Omega, Elsevier, vol. 29(3), pages 249-272, June.
    13. Weglarz, Jan & Józefowska, Joanna & Mika, Marek & Waligóra, Grzegorz, 2011. "Project scheduling with finite or infinite number of activity processing modes - A survey," European Journal of Operational Research, Elsevier, vol. 208(3), pages 177-205, February.
    14. Hartmann, Sönke & Briskorn, Dirk, 2010. "A survey of variants and extensions of the resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 207(1), pages 1-14, November.
    15. Van Peteghem, Vincent & Vanhoucke, Mario, 2014. "An experimental investigation of metaheuristics for the multi-mode resource-constrained project scheduling problem on new dataset instances," European Journal of Operational Research, Elsevier, vol. 235(1), pages 62-72.
    16. Moumene, Khaled & Ferland, Jacques A., 2009. "Activity list representation for a generalization of the resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 199(1), pages 46-54, November.
    17. Kellenbrink, Carolin & Helber, Stefan, 2015. "Scheduling resource-constrained projects with a flexible project structure," European Journal of Operational Research, Elsevier, vol. 246(2), pages 379-391.
    18. Kolisch, Rainer & Hartmann, Sonke, 2006. "Experimental investigation of heuristics for resource-constrained project scheduling: An update," European Journal of Operational Research, Elsevier, vol. 174(1), pages 23-37, October.
    19. R. Christopher L. Riley & Cesar Rego, 2019. "Intensification, diversification, and learning via relaxation adaptive memory programming: a case study on resource constrained project scheduling," Journal of Heuristics, Springer, vol. 25(4), pages 793-807, October.
    20. Zamani, Reza, 2013. "A competitive magnet-based genetic algorithm for solving the resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 229(2), pages 552-559.

    More about this item

    Keywords

    Project scheduling; Encodings; Heuristics; Local-search; Genetic algorithm; RCPSP; Overtime;
    All these keywords.

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • C44 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Operations Research; Statistical Decision Theory
    • M11 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Business Administration - - - Production Management

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:busres:v:11:y:2018:i:2:d:10.1007_s40685-018-0063-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.