IDEAS home Printed from https://ideas.repec.org/a/eee/ecolet/v154y2017icp96-100.html
   My bibliography  Save this article

Efficient semiparametric estimation for Gini inequality treatment effects

Author

Listed:
  • Lv, Xiaofeng
  • Li, Rui
  • Fang, Zheng

Abstract

This paper evaluates the effects of a program on Gini index where the selection to treatment depends on covariates. We propose a two-step nonparametric estimation procedure for the Gini inequality treatment effects. The proposed new estimator is shown to be consistent and has asymptotical normal distribution. We also show that the proposed estimator achieves semiparametric efficiency bound. Simulations confirm the theoretical results and show that the proposed estimator has good finite sample performance.

Suggested Citation

  • Lv, Xiaofeng & Li, Rui & Fang, Zheng, 2017. "Efficient semiparametric estimation for Gini inequality treatment effects," Economics Letters, Elsevier, vol. 154(C), pages 96-100.
  • Handle: RePEc:eee:ecolet:v:154:y:2017:i:c:p:96-100
    DOI: 10.1016/j.econlet.2017.02.038
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165176517300915
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.econlet.2017.02.038?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sergio Firpo, 2007. "Efficient Semiparametric Estimation of Quantile Treatment Effects," Econometrica, Econometric Society, vol. 75(1), pages 259-276, January.
    2. Keisuke Hirano & Guido W. Imbens & Geert Ridder, 2003. "Efficient Estimation of Average Treatment Effects Using the Estimated Propensity Score," Econometrica, Econometric Society, vol. 71(4), pages 1161-1189, July.
    3. Li, Qi & Racine, Jeffrey S. & Wooldridge, Jeffrey M., 2009. "Efficient Estimation of Average Treatment Effects with Mixed Categorical and Continuous Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(2), pages 206-223.
    4. Rothe, Christoph, 2010. "Nonparametric estimation of distributional policy effects," Journal of Econometrics, Elsevier, vol. 155(1), pages 56-70, March.
    5. Qi Li & Jeffrey S. Racine & Jeffrey M. Wooldridge, 2008. "Estimating Average Treatment Effects with Continuous and Discrete Covariates: The Case of Swan-Ganz Catheterization," American Economic Review, American Economic Association, vol. 98(2), pages 357-362, May.
    6. Davidson, Russell, 2009. "Reliable inference for the Gini index," Journal of Econometrics, Elsevier, vol. 150(1), pages 30-40, May.
    7. Newey, Whitney K, 1990. "Semiparametric Efficiency Bounds," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 5(2), pages 99-135, April-Jun.
    8. Guido W. Imbens, 2004. "Nonparametric Estimation of Average Treatment Effects Under Exogeneity: A Review," The Review of Economics and Statistics, MIT Press, vol. 86(1), pages 4-29, February.
    9. Qin, Yongsong & Rao, J.N.K. & Wu, Changbao, 2010. "Empirical likelihood confidence intervals for the Gini measure of income inequality," Economic Modelling, Elsevier, vol. 27(6), pages 1429-1435, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Roman Matkovskyy, 2020. "A measurement of affluence and poverty interdependence across countries: Evidence from the application of tail copula," Bulletin of Economic Research, Wiley Blackwell, vol. 72(4), pages 404-416, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Victor Chernozhukov & Iván Fernández‐Val & Blaise Melly, 2013. "Inference on Counterfactual Distributions," Econometrica, Econometric Society, vol. 81(6), pages 2205-2268, November.
    2. Alejo, Javier & Galvao, Antonio F. & Montes-Rojas, Gabriel, 2018. "Quantile continuous treatment effects," Econometrics and Statistics, Elsevier, vol. 8(C), pages 13-36.
    3. Sookyo Jeong & Hongseok Namkoong, 2020. "Assessing External Validity Over Worst-case Subpopulations," Papers 2007.02411, arXiv.org, revised Feb 2022.
    4. Francesco Bravo & David Jacho-Chavez, 2011. "Empirical Likelihood for Efficient Semiparametric Average Treatment Effects," Econometric Reviews, Taylor & Francis Journals, vol. 30(1), pages 1-24.
    5. Gernandt, Johannes & Maier, Michael & Pfeiffer, Friedhelm & Rat-Wirtzler, Julie, 2006. "Distributional effects of the high school degree in Germany," ZEW Discussion Papers 06-088, ZEW - Leibniz Centre for European Economic Research.
    6. Verdugo, G. & Fraisse, H. & Horny, G., 2012. "Changes In Wage Inequality In France: The Impact Of Composition Effects (in French)," Working papers 370, Banque de France.
    7. Richard K. Crump & V. Joseph Hotz & Guido W. Imbens & Oscar A. Mitnik, 2008. "Nonparametric Tests for Treatment Effect Heterogeneity," The Review of Economics and Statistics, MIT Press, vol. 90(3), pages 389-405, August.
    8. Chunrong Ai & Oliver Linton & Kaiji Motegi & Zheng Zhang, 2021. "A unified framework for efficient estimation of general treatment models," Quantitative Economics, Econometric Society, vol. 12(3), pages 779-816, July.
    9. Maier, Michael, 2011. "Tests for distributional treatment effects under unconfoundedness," Economics Letters, Elsevier, vol. 110(1), pages 49-51, January.
    10. Halbert White & Karim Chalak, 2013. "Identification and Identification Failure for Treatment Effects Using Structural Systems," Econometric Reviews, Taylor & Francis Journals, vol. 32(3), pages 273-317, November.
    11. Guido W. Imbens & Jeffrey M. Wooldridge, 2009. "Recent Developments in the Econometrics of Program Evaluation," Journal of Economic Literature, American Economic Association, vol. 47(1), pages 5-86, March.
    12. Firpo, Sergio Pinheiro & Pinto, Rafael de Carvalho Cayres, 2012. "Combining Strategies for the Estimation of Treatment Effects," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 32(1), March.
    13. Frölich, Markus & Huber, Martin & Wiesenfarth, Manuel, 2017. "The finite sample performance of semi- and non-parametric estimators for treatment effects and policy evaluation," Computational Statistics & Data Analysis, Elsevier, vol. 115(C), pages 91-102.
    14. Fan, Yanqin & Shi, Xuetao & Tao, Jing, 2023. "Partial identification and inference in moment models with incomplete data," Journal of Econometrics, Elsevier, vol. 235(2), pages 418-443.
    15. Ying-Ying Lee, 2014. "Partial Mean Processes with Generated Regressors: Continuous Treatment Effects and Nonseparable Models," Economics Series Working Papers 706, University of Oxford, Department of Economics.
    16. Ying-Ying Lee, 2015. "Efficient propensity score regression estimators of multi-valued treatment effects for the treated," Economics Series Working Papers 738, University of Oxford, Department of Economics.
    17. Rahul Singh & Liyuan Xu & Arthur Gretton, 2020. "Kernel Methods for Causal Functions: Dose, Heterogeneous, and Incremental Response Curves," Papers 2010.04855, arXiv.org, revised Oct 2022.
    18. Martin Huber & Jannis Kueck, 2022. "Testing the identification of causal effects in observational data," Papers 2203.15890, arXiv.org, revised Jun 2023.
    19. Donald, Stephen G. & Hsu, Yu-Chin, 2014. "Estimation and inference for distribution functions and quantile functions in treatment effect models," Journal of Econometrics, Elsevier, vol. 178(P3), pages 383-397.
    20. Christoph Rothe, 2012. "Partial Distributional Policy Effects," Econometrica, Econometric Society, vol. 80(5), pages 2269-2301, September.

    More about this item

    Keywords

    Gini inequality; Treatment effects; Semiparametric method; Two-step estimation; Efficiency bound;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolet:v:154:y:2017:i:c:p:96-100. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.