IDEAS home Printed from https://ideas.repec.org/a/eee/ecolet/v110y2011i1p49-51.html
   My bibliography  Save this article

Tests for distributional treatment effects under unconfoundedness

Author

Listed:
  • Maier, Michael

Abstract

This note describes tests for distributional treatment effects under the unconfoundedness assumption. Tests for distributional equality and stochastic dominance as well as a bootstrap procedure for computing critical values are presented, and the asymptotic properties of the procedure are derived.

Suggested Citation

  • Maier, Michael, 2011. "Tests for distributional treatment effects under unconfoundedness," Economics Letters, Elsevier, vol. 110(1), pages 49-51, January.
  • Handle: RePEc:eee:ecolet:v:110:y:2011:i:1:p:49-51
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165-1765(10)00347-2
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marianne P. Bitler & Jonah B. Gelbach & Hilary W. Hoynes, 2006. "What Mean Impacts Miss: Distributional Effects of Welfare Reform Experiments," American Economic Review, American Economic Association, vol. 96(4), pages 988-1012, September.
    2. Sergio Firpo, 2007. "Efficient Semiparametric Estimation of Quantile Treatment Effects," Econometrica, Econometric Society, vol. 75(1), pages 259-276, January.
    3. Alberto Abadie & Joshua Angrist & Guido Imbens, 2002. "Instrumental Variables Estimates of the Effect of Subsidized Training on the Quantiles of Trainee Earnings," Econometrica, Econometric Society, vol. 70(1), pages 91-117, January.
    4. Markus Frölich & Blaise Melly, 2013. "Unconditional Quantile Treatment Effects Under Endogeneity," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(3), pages 346-357, July.
    5. Sergio Firpo & Cristine Pinto, 2016. "Identification and Estimation of Distributional Impacts of Interventions Using Changes in Inequality Measures," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(3), pages 457-486, April.
    6. Guido W. Imbens & Jeffrey M. Wooldridge, 2009. "Recent Developments in the Econometrics of Program Evaluation," Journal of Economic Literature, American Economic Association, vol. 47(1), pages 5-86, March.
    7. Keisuke Hirano & Guido W. Imbens & Geert Ridder, 2003. "Efficient Estimation of Average Treatment Effects Using the Estimated Propensity Score," Econometrica, Econometric Society, vol. 71(4), pages 1161-1189, July.
    8. Cowell, F.A., 2000. "Measurement of inequality," Handbook of Income Distribution,in: A.B. Atkinson & F. Bourguignon (ed.), Handbook of Income Distribution, edition 1, volume 1, chapter 2, pages 87-166 Elsevier.
    9. Guido W. Imbens, 2004. "Nonparametric Estimation of Average Treatment Effects Under Exogeneity: A Review," The Review of Economics and Statistics, MIT Press, vol. 86(1), pages 4-29, February.
    10. Abadie A., 2002. "Bootstrap Tests for Distributional Treatment Effects in Instrumental Variable Models," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 284-292, March.
    11. James J. Heckman & Hidehiko Ichimura & Petra Todd, 1998. "Matching As An Econometric Evaluation Estimator," Review of Economic Studies, Oxford University Press, vol. 65(2), pages 261-294.
    12. Chernozhukov, Victor & Hansen, Christian, 2006. "Instrumental quantile regression inference for structural and treatment effect models," Journal of Econometrics, Elsevier, vol. 132(2), pages 491-525, June.
    13. Myoung-jae Lee, 2009. "Non-parametric tests for distributional treatment effect for randomly censored responses," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(1), pages 243-264.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Donald, Stephen G. & Hsu, Yu-Chin, 2014. "Estimation and inference for distribution functions and quantile functions in treatment effect models," Journal of Econometrics, Elsevier, vol. 178(P3), pages 383-397.
    2. Steven F. Lehrer & R. Vincent Pohl & Kyungchul Song, 2016. "Targeting Policies: Multiple Testing and Distributional Treatment Effects," NBER Working Papers 22950, National Bureau of Economic Research, Inc.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolet:v:110:y:2011:i:1:p:49-51. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/ecolet .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.