IDEAS home Printed from https://ideas.repec.org/p/hal/wpaper/halshs-00443553.html

Reliable inference for the GINI Index

Author

Listed:
  • Russell Davidson

    (GREQAM - Groupement de Recherche en Économie Quantitative d'Aix-Marseille - EHESS - École des hautes études en sciences sociales - AMU - Aix Marseille Université - ECM - École Centrale de Marseille - CNRS - Centre National de la Recherche Scientifique, CIREQ - Centre interuniversitaire de recherche en économie quantitative, Department of Economics [Montréal] - McGill University = Université McGill [Montréal, Canada])

Abstract

Although attention has been given to obtaining reliable standard errors for the plugin estimator of the Gini index, all standard errors suggested until now are either complicated or quite unreliable. An approximation is derived for the estimator by which it is expressed as a sum of IID random variables. This approximation allows us to develop a reliable standard error that is simple to compute. A simple but effective bias correction is also derived. The quality of inference based on the approximation is checked in a number of simulation experiments, and is found to be very good unless the tail of the underlying distribution is heavy. Bootstrap methods are presented which alleviate this problem except in cases in which the variance is very large or fails to exist. Similar methods can be used to find reliable standard errors of other indices which are not simply linear functionals of the distribution function, such as Sen's poverty index and its modification known as the Sen-Shorrocks-Thon index.

Suggested Citation

  • Russell Davidson, 2009. "Reliable inference for the GINI Index," Working Papers halshs-00443553, HAL.
  • Handle: RePEc:hal:wpaper:halshs-00443553
    Note: View the original document on HAL open archive server: https://shs.hal.science/halshs-00443553
    as

    Download full text from publisher

    File URL: https://shs.hal.science/halshs-00443553/document
    Download Restriction: no
    ---><---

    Other versions of this item:

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:wpaper:halshs-00443553. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.