IDEAS home Printed from https://ideas.repec.org/a/eee/ecolet/v141y2016icp116-118.html
   My bibliography  Save this article

Forecasting the term structure of volatility of crude oil price changes

Author

Listed:
  • Balaban, Ercan
  • Lu, Shan

Abstract

This is a pioneering effort to test the comparative performance of two competing models for out-of-sample forecasting the term structure of volatility of crude oil price changes employing both symmetric and asymmetric evaluation criteria. Under symmetric error statistics, our empirical model using the estimated growth factor of volatility through time is overall superior, and it beats in most cases the benchmark model of the square-root-of-time (T) for holding periods between one and 250 days. Under asymmetric error statistics, if over-prediction (under-prediction) of volatility is undesirable, the empirical (benchmark) model is consistently superior. Relative performance of the empirical model is much higher for holding periods up to fifty days.

Suggested Citation

  • Balaban, Ercan & Lu, Shan, 2016. "Forecasting the term structure of volatility of crude oil price changes," Economics Letters, Elsevier, vol. 141(C), pages 116-118.
  • Handle: RePEc:eee:ecolet:v:141:y:2016:i:c:p:116-118
    DOI: 10.1016/j.econlet.2016.02.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165176516300441
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ser-Huang Poon & Clive W.J. Granger, 2003. "Forecasting Volatility in Financial Markets: A Review," Journal of Economic Literature, American Economic Association, vol. 41(2), pages 478-539, June.
    2. Robert Engle, 2004. "Risk and Volatility: Econometric Models and Financial Practice," American Economic Review, American Economic Association, vol. 94(3), pages 405-420, June.
    3. Haugom, Erik & Langeland, Henrik & Molnár, Peter & Westgaard, Sjur, 2014. "Forecasting volatility of the U.S. oil market," Journal of Banking & Finance, Elsevier, vol. 47(C), pages 1-14.
    4. Brailsford, Timothy J. & Faff, Robert W., 1996. "An evaluation of volatility forecasting techniques," Journal of Banking & Finance, Elsevier, vol. 20(3), pages 419-438, April.
    5. Pagan, Adrian R. & Schwert, G. William, 1990. "Alternative models for conditional stock volatility," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 267-290.
    6. Danielsson, Jon & Zigrand, Jean-Pierre, 2006. "On time-scaling of risk and the square-root-of-time rule," Journal of Banking & Finance, Elsevier, vol. 30(10), pages 2701-2713, October.
    7. Wang, Jying-Nan & Yeh, Jin-Huei & Cheng, Nick Ying-Pin, 2011. "How accurate is the square-root-of-time rule in scaling tail risk: A global study," Journal of Banking & Finance, Elsevier, vol. 35(5), pages 1158-1169, May.
    8. Wang, Yudong & Wu, Chongfeng, 2012. "Forecasting energy market volatility using GARCH models: Can multivariate models beat univariate models?," Energy Economics, Elsevier, vol. 34(6), pages 2167-2181.
    9. Ercan Balaban & Asli Bayar & Robert Faff, 2006. "Forecasting stock market volatility: Further international evidence," The European Journal of Finance, Taylor & Francis Journals, vol. 12(2), pages 171-188.
    10. Balaban, Ercan, 2004. "Comparative forecasting performance of symmetric and asymmetric conditional volatility models of an exchange rate," Economics Letters, Elsevier, vol. 83(1), pages 99-105, April.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Volatility term structure; Square-root-of-time rule; Forecasting; Forecast evaluation; Oil prices;

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolet:v:141:y:2016:i:c:p:116-118. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/ecolet .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.