IDEAS home Printed from https://ideas.repec.org/a/eee/ecolec/v69y2010i12p2427-2434.html
   My bibliography  Save this article

Non-consumptive values and optimal marine reserve switching

Author

Listed:
  • Yamazaki, Satoshi
  • Grafton, R. Quentin
  • Kompas, Tom

Abstract

A bioeconomic model is constructed to analyze spatial harvesting and the effects of marine reserve "switching" between a "no-take" area and a harvested area while accounting for both harvesting/consumptive and also non-consumptive values of the fishery. Using estimated parameters from the red throat emperor fishery from the Great Barrier Reef, simulations show that an optimal switching strategy can be preferred to a fixed reserve regime, but is dependent on spillovers from reserves to harvested areas, the nature of shocks to the environment, the size of the non-consumptive values and how they change with the biomass, and the sensitivity of profits to the harvest and biomass. Importantly, the results show that how non-consumptive values change with the size of the fishery substantially affects both the returns from switching and the optimal closure time.

Suggested Citation

  • Yamazaki, Satoshi & Grafton, R. Quentin & Kompas, Tom, 2010. "Non-consumptive values and optimal marine reserve switching," Ecological Economics, Elsevier, vol. 69(12), pages 2427-2434, October.
  • Handle: RePEc:eee:ecolec:v:69:y:2010:i:12:p:2427-2434
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921-8009(10)00277-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kenneth L. Judd, 1998. "Numerical Methods in Economics," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262100711, September.
    2. Stephen K. Swallow & Piyali Talukdar & David N. Wear, 1997. "Spatial and Temporal Specialization in Forest Ecosystem Management Under Sole Ownership," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 79(2), pages 311-326.
    3. Hartman, Richard, 1976. "The Harvesting Decision When a Standing Forest Has Value," Economic Inquiry, Western Economic Association International, vol. 14(1), pages 52-58, March.
    4. Wielgus, Jeffrey & Sala, Enric & Gerber, Leah R., 2008. "Assessing the ecological and economic benefits of a no-take marine reserve," Ecological Economics, Elsevier, vol. 67(1), pages 32-40, August.
    5. R. Grafton & Tom Kompas & Viktoria Schneider, 2005. "The Bioeconomics of Marine Reserves: A Selected Review with Policy Implications," Journal of Bioeconomics, Springer, vol. 7(2), pages 161-178, January.
    6. Kragt, Marit Ellen & Roebeling, Peter C. & Ruijs, Arjan, 2009. "Effects of Great Barrier Reef degradation on recreational reef-trip demand: a contingent behaviour approach," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 53(2), pages 1-17.
    7. Clark, Colin W. & Munro, Gordon R., 1975. "The economics of fishing and modern capital theory: A simplified approach," Journal of Environmental Economics and Management, Elsevier, vol. 2(2), pages 92-106, December.
    8. R. Quentin Grafton & Tom Kompas & Pham Van Ha, 2006. "The Economic Payoffs from Marine Reserves: Resource Rents in a Stochastic Environment," The Economic Record, The Economic Society of Australia, vol. 82(259), pages 469-480, December.
    9. Costello, Christopher & Polasky, Stephen, 2004. "Dynamic reserve site selection," Resource and Energy Economics, Elsevier, vol. 26(2), pages 157-174, June.
    10. Costello, Christopher & Polasky, Stephen, 2008. "Optimal harvesting of stochastic spatial resources," Journal of Environmental Economics and Management, Elsevier, vol. 56(1), pages 1-18, July.
    11. Pezzey, John C. V. & Roberts, Callum M. & Urdal, Bjorn T., 2000. "A simple bioeconomic model of a marine reserve," Ecological Economics, Elsevier, vol. 33(1), pages 77-91, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nichols, Rachel & Yamazaki, Satoshi & Jennings, Sarah, 2018. "The Role of Precaution in Stock Recovery Plans in a Fishery with Habitat Effect," Ecological Economics, Elsevier, vol. 146(C), pages 359-369.
    2. Yamazaki, Satoshi & Jennings, Sarah & Quentin Grafton, R. & Kompas, Tom, 2015. "Are marine reserves and harvest control rules substitutes or complements for rebuilding fisheries?," Resource and Energy Economics, Elsevier, vol. 40(C), pages 1-18.
    3. Pintassilgo, Pedro & Laukkanen, Marita & Kronbak, Lone Grønbæk & Lindroos, Marko, 2015. "International Fisheries Agreements and Non-consumptive Values," Discussion Papers of Business and Economics 8/2015, University of Southern Denmark, Department of Business and Economics.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eppink, Florian V. & van den Bergh, Jeroen C.J.M., 2007. "Ecological theories and indicators in economic models of biodiversity loss and conservation: A critical review," Ecological Economics, Elsevier, vol. 61(2-3), pages 284-293, March.
    2. Polasky, Stephen & Costello, Christopher & Solow, Andrew, 2005. "The Economics of Biodiversity," Handbook of Environmental Economics, in: K. G. Mäler & J. R. Vincent (ed.), Handbook of Environmental Economics, edition 1, volume 3, chapter 29, pages 1517-1560, Elsevier.
    3. Yamazaki, Satoshi, 2008. "Marine Reserves Switching under Uncertainty," 2008 Conference (52nd), February 5-8, 2008, Canberra, Australia 6003, Australian Agricultural and Resource Economics Society.
    4. Cacho, Oscar, 2001. "An analysis of externalities in agroforestry systems in the presence of land degradation," Ecological Economics, Elsevier, vol. 39(1), pages 131-143, October.
    5. Sims, Katharine R.E., 2010. "Conservation and development: Evidence from Thai protected areas," Journal of Environmental Economics and Management, Elsevier, vol. 60(2), pages 94-114, September.
    6. R. Quentin Grafton & Tom Kompas & Pham Van Ha, 2009. "Cod Today and None Tomorrow: The Economic Value of a Marine Reserve," Land Economics, University of Wisconsin Press, vol. 85(3), pages 454-469.
    7. Brock, William & Xepapadeas, Anastasios, 2010. "Pattern formation, spatial externalities and regulation in coupled economic-ecological systems," Journal of Environmental Economics and Management, Elsevier, vol. 59(2), pages 149-164, March.
    8. Pohjola, Johanna & Laturi, Jani & Lintunen, Jussi & Uusivuori, Jussi, 2018. "Immediate and long-run impacts of a forest carbon policy—A market-level assessment with heterogeneous forest owners," Journal of Forest Economics, Elsevier, vol. 32(C), pages 94-105.
    9. Greenville, Jared W. & MacAulay, T. Gordon, 2006. "A Bioeconomic Analysis of Protected Area use in Fisheries Management," 2006 Annual meeting, July 23-26, Long Beach, CA 21469, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    10. Smith, Martin D. & Sanchirico, James N. & Wilen, James E., 2009. "The economics of spatial-dynamic processes: Applications to renewable resources," Journal of Environmental Economics and Management, Elsevier, vol. 57(1), pages 104-121, January.
    11. Jens Abildtrup & Jacques-Alexandre Laye & Maximilien Laye & Anne Stenger, 2012. "Irreversibility and Uncertainty in Multifunctional Forest Management Allocation," Post-Print hal-01072290, HAL.
    12. Blackwood, Julie & Hastings, Alan & Costello, Christopher, 2010. "Cost-effective management of invasive species using linear-quadratic control," Ecological Economics, Elsevier, vol. 69(3), pages 519-527, January.
    13. Couture, Stéphane & Reynaud, Arnaud, 2011. "Forest management under fire risk when forest carbon sequestration has value," Ecological Economics, Elsevier, vol. 70(11), pages 2002-2011, September.
    14. Gregory, S. Amacher & Christine Conway, M. & Sullivan, Jay & Gregory, S. Amacher, 2003. "Econometric analyses of nonindustrial forest landowners: Is there anything left to study?," Journal of Forest Economics, Elsevier, vol. 9(2), pages 137-164.
    15. Greenville, Jared W. & MacAulay, T. Gordon, 2006. "A Bioeconomic Analysis of Protected Area use in Fisheries Management," 2006 Conference (50th), February 8-10, 2006, Sydney, Australia 139738, Australian Agricultural and Resource Economics Society.
    16. Warziniack, Travis & Sims, Charles & Haas, Jessica, 2019. "Fire and the joint production of ecosystem services: A spatial-dynamic optimization approach," Forest Policy and Economics, Elsevier, vol. 107(C), pages 1-1.
    17. Harry F. Campbell & Sarah M. Jennings, 2004. "Non‐timber Values and the Optimal Forest Rotation: An Application to the Southern Forest of Tasmania," The Economic Record, The Economic Society of Australia, vol. 80(251), pages 387-393, December.
    18. Newman, D.H., 2002. "Forestry's golden rule and the development of the optimal forest rotation literature," Journal of Forest Economics, Elsevier, vol. 8(1), pages 5-27.
    19. Ready, Richard C. & Bergland, Olvar & Romstad, Eirik, 2001. "Optimal Management Of A Forest/Wildlife System With Bilateral Externalities," 2001 Annual meeting, August 5-8, Chicago, IL 20561, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    20. Sarkar, Sudipto, 2009. "Optimal fishery harvesting rules under uncertainty," Resource and Energy Economics, Elsevier, vol. 31(4), pages 272-286, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolec:v:69:y:2010:i:12:p:2427-2434. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Nithya Sathishkumar). General contact details of provider: http://www.elsevier.com/locate/ecolecon .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.