IDEAS home Printed from https://ideas.repec.org/a/eee/ecofin/v72y2024ics1062940824000846.html
   My bibliography  Save this article

A comparison of bitcoin futures return and return volatility based on news sentiment contemporaneously or lead-lag

Author

Listed:
  • Kao, Yu-Sheng
  • Day, Min-Yuh
  • Chou, Ke-Hsin

Abstract

This study explores the relationship between sentiment analysis of news articles and the returns and return volatility of the Bitcoin futures index on the Chicago Mercantile Exchange (CME). Utilizing sentiment analysis through Natural Language Processing and collecting a dataset of 41,040 Bitcoin futures news articles from 1,408 public news websites, the study employs a threshold model with GJR-GARCH (1,1) to conduct empirical tests. The findings reveal that negative information flow significantly impacts the Bitcoin futures index returns in the short term, challenging the weak form of the Efficient Market Hypothesis (EMH). Additionally, positive information flow is found to affect return volatility on the contemporaneous trading day, aligning with the Mixture of Distribution Hypothesis (MDH), which suggests that market reactions to new information are efficiently integrated into prices. The analysis also shows that both positive and negative information flows exert significant effects on return volatility in lagged trading days, supporting the Sequential Information Arrival Hypothesis (SIAH). This indicates a nuanced market reaction over time to varying information flows. Moreover, the study highlights the significant role of the COVID-19 pandemic in increasing investor demand for the Bitcoin futures index, driven by a mix of hedging and speculative motives. These findings underscore the complex interplay between information flow and market behavior, elucidating the nuanced responses of the Bitcoin futures market to news information stimuli.

Suggested Citation

  • Kao, Yu-Sheng & Day, Min-Yuh & Chou, Ke-Hsin, 2024. "A comparison of bitcoin futures return and return volatility based on news sentiment contemporaneously or lead-lag," The North American Journal of Economics and Finance, Elsevier, vol. 72(C).
  • Handle: RePEc:eee:ecofin:v:72:y:2024:i:c:s1062940824000846
    DOI: 10.1016/j.najef.2024.102159
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1062940824000846
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.najef.2024.102159?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fama, Eugene F., 1998. "Market efficiency, long-term returns, and behavioral finance," Journal of Financial Economics, Elsevier, vol. 49(3), pages 283-306, September.
    2. Kim, Wonse & Lee, Junseok & Kang, Kyungwon, 2020. "The effects of the introduction of Bitcoin futures on the volatility of Bitcoin returns," Finance Research Letters, Elsevier, vol. 33(C).
    3. Dai, Zhifeng & Zhu, Huan, 2020. "Stock return predictability from a mixed model perspective," Pacific-Basin Finance Journal, Elsevier, vol. 60(C).
    4. Wataru Souma & Irena Vodenska & Hideaki Aoyama, 2019. "Enhanced news sentiment analysis using deep learning methods," Journal of Computational Social Science, Springer, vol. 2(1), pages 33-46, January.
    5. James Nguyen & Wei-Xuan Li & Clara Chia-Sheng Chen, 2022. "Mean Reversions in Major Developed Stock Markets: Recent Evidence from Unit Root, Spectral and Abnormal Return Studies," JRFM, MDPI, vol. 15(4), pages 1-20, April.
    6. Lyócsa, Štefan & Molnár, Peter & Plíhal, Tomáš & Širaňová, Mária, 2020. "Impact of macroeconomic news, regulation and hacking exchange markets on the volatility of bitcoin," Journal of Economic Dynamics and Control, Elsevier, vol. 119(C).
    7. Tauchen, George E & Pitts, Mark, 1983. "The Price Variability-Volume Relationship on Speculative Markets," Econometrica, Econometric Society, vol. 51(2), pages 485-505, March.
    8. Sapkota, Niranjan, 2022. "News-based sentiment and bitcoin volatility," International Review of Financial Analysis, Elsevier, vol. 82(C).
    9. Epps, Thomas W & Epps, Mary Lee, 1976. "The Stochastic Dependence of Security Price Changes and Transaction Volumes: Implications for the Mixture-of-Distributions Hypothesis," Econometrica, Econometric Society, vol. 44(2), pages 305-321, March.
    10. Shimeng Shi & Yukun Shi, 2021. "Bitcoin futures: trade it or ban it?," The European Journal of Finance, Taylor & Francis Journals, vol. 27(4-5), pages 381-396, March.
    11. Arouri, Mohamed El Hédi & Lahiani, Amine & Lévy, Aldo & Nguyen, Duc Khuong, 2012. "Forecasting the conditional volatility of oil spot and futures prices with structural breaks and long memory models," Energy Economics, Elsevier, vol. 34(1), pages 283-293.
    12. Balcilar, Mehmet & Bouri, Elie & Gupta, Rangan & Roubaud, David, 2017. "Can volume predict Bitcoin returns and volatility? A quantiles-based approach," Economic Modelling, Elsevier, vol. 64(C), pages 74-81.
    13. Akyildirim, Erdinc & Corbet, Shaen & Katsiampa, Paraskevi & Kellard, Neil & Sensoy, Ahmet, 2020. "The development of Bitcoin futures: Exploring the interactions between cryptocurrency derivatives," Finance Research Letters, Elsevier, vol. 34(C).
    14. Köchling, Gerrit & Müller, Janis & Posch, Peter N., 2019. "Does the introduction of futures improve the efficiency of Bitcoin?," Finance Research Letters, Elsevier, vol. 30(C), pages 367-370.
    15. David E. Allen & Michael McAleer & Abhay K. Singh, 2019. "Daily market news sentiment and stock prices," Applied Economics, Taylor & Francis Journals, vol. 51(30), pages 3212-3235, June.
    16. Kapar, Burcu & Olmo, Jose, 2019. "An analysis of price discovery between Bitcoin futures and spot markets," Economics Letters, Elsevier, vol. 174(C), pages 62-64.
    17. Elliott, Graham & Rothenberg, Thomas J & Stock, James H, 1996. "Efficient Tests for an Autoregressive Unit Root," Econometrica, Econometric Society, vol. 64(4), pages 813-836, July.
    18. Nicolas P.B. Bollen & Robert E. Whaley, 2015. "Futures Market Volatility: What Has Changed?," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 35(5), pages 426-454, May.
    19. R. Glen Donaldson & Mark J. Kamstra, 2005. "Volatility Forecasts, Trading Volume, And The Arch Versus Option‐Implied Volatility Trade‐Off," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 28(4), pages 519-538, December.
    20. Kraaijeveld, Olivier & De Smedt, Johannes, 2020. "The predictive power of public Twitter sentiment for forecasting cryptocurrency prices," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 65(C).
    21. Fassas, Athanasios P. & Papadamou, Stephanos & Koulis, Alexandros, 2020. "Price discovery in bitcoin futures," Research in International Business and Finance, Elsevier, vol. 52(C).
    22. Burton G. Malkiel, 2003. "The Efficient Market Hypothesis and Its Critics," Journal of Economic Perspectives, American Economic Association, vol. 17(1), pages 59-82, Winter.
    23. Ho, Kin-Yip & Shi, Yanlin & Zhang, Zhaoyong, 2020. "News and return volatility of Chinese bank stocks," International Review of Economics & Finance, Elsevier, vol. 69(C), pages 1095-1105.
    24. Jennings, Robert H & Starks, Laura T & Fellingham, John C, 1981. "An Equilibrium Model of Asset Trading with Sequential Information Arrival," Journal of Finance, American Finance Association, vol. 36(1), pages 143-161, March.
    25. Gan, Baoqing & Alexeev, Vitali & Bird, Ron & Yeung, Danny, 2020. "Sensitivity to sentiment: News vs social media," International Review of Financial Analysis, Elsevier, vol. 67(C).
    26. Shen, Dehua & Li, Xiao & Zhang, Wei, 2018. "Baidu news information flow and return volatility: Evidence for the Sequential Information Arrival Hypothesis," Economic Modelling, Elsevier, vol. 69(C), pages 127-133.
    27. Burton G. Malkiel, 2003. "The Efficient Market Hypothesis and Its Critics," Working Papers 111, Princeton University, Department of Economics, Center for Economic Policy Studies..
    28. Caferra, Rocco & Vidal-Tomás, David, 2021. "Who raised from the abyss? A comparison between cryptocurrency and stock market dynamics during the COVID-19 pandemic," Finance Research Letters, Elsevier, vol. 43(C).
    29. Zhu, Xuehong & Niu, Zibo & Zhang, Hongwei & Huang, Jiaxin & Zuo, Xuguang, 2022. "Can gold and bitcoin hedge against the COVID-19 related news sentiment risk? New evidence from a NARDL approach," Resources Policy, Elsevier, vol. 79(C).
    30. Lamoureux, Christopher G & Lastrapes, William D, 1990. "Heteroskedasticity in Stock Return Data: Volume versus GARCH Effects," Journal of Finance, American Finance Association, vol. 45(1), pages 221-229, March.
    31. Burton G. Malkiel, 2003. "The Efficient Market Hypothesis and Its Critics," Working Papers 111, Princeton University, Department of Economics, Center for Economic Policy Studies..
    32. Fleming, Jeff & Kirby, Chris, 2011. "Long memory in volatility and trading volume," Journal of Banking & Finance, Elsevier, vol. 35(7), pages 1714-1726, July.
    33. López-Cabarcos, M. Ángeles & Pérez-Pico, Ada M. & Piñeiro-Chousa, Juan & Šević, Aleksandar, 2021. "Bitcoin volatility, stock market and investor sentiment. Are they connected?," Finance Research Letters, Elsevier, vol. 38(C).
    34. Smales, Lee A., 2015. "Asymmetric volatility response to news sentiment in gold futures," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 34(C), pages 161-172.
    35. Ho, Kin-Yip & Shi, Yanlin & Zhang, Zhaoyong, 2017. "Does news matter in China’s foreign exchange market? Chinese RMB volatility and public information arrivals," International Review of Economics & Finance, Elsevier, vol. 52(C), pages 302-321.
    36. Shi, Yanlin & Ho, Kin-Yip & Liu, Wai-Man, 2016. "Public information arrival and stock return volatility: Evidence from news sentiment and Markov Regime-Switching Approach," International Review of Economics & Finance, Elsevier, vol. 42(C), pages 291-312.
    37. Shi, Yanlin & Ho, Kin-Yip, 2021. "News sentiment and states of stock return volatility: Evidence from long memory and discrete choice models," Finance Research Letters, Elsevier, vol. 38(C).
    38. French, Kenneth R. & Roll, Richard, 1986. "Stock return variances : The arrival of information and the reaction of traders," Journal of Financial Economics, Elsevier, vol. 17(1), pages 5-26, September.
    39. repec:pri:cepsud:91malkiel is not listed on IDEAS
    40. Hattori, Takahiro & Ishida, Ryo, 2021. "Did the introduction of Bitcoin futures crash the Bitcoin market at the end of 2017?," The North American Journal of Economics and Finance, Elsevier, vol. 56(C).
    41. Kao, Yu-Sheng & Chuang, Hwei-Lin & Ku, Yu-Cheng, 2020. "The empirical linkages among market returns, return volatility, and trading volume: Evidence from the S&P 500 VIX Futures," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).
    42. Smirlock, Michael & Starks, Laura, 1988. "An empirical analysis of the stock price-volume relationship," Journal of Banking & Finance, Elsevier, vol. 12(1), pages 31-41, March.
    43. Michael Smirlock & Laura Starks, 1985. "A Further Examination Of Stock Price Changes And Transaction Volume," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 8(3), pages 217-226, September.
    44. Chou, Ke-Hsin & Day, Min-Yuh & Chiu, Chien-Liang, 2023. "Do bitcoin news information flow and return volatility fit the sequential information arrival hypothesis and the mixture of distribution hypothesis?," International Review of Economics & Finance, Elsevier, vol. 88(C), pages 365-385.
    45. Clark, Peter K, 1973. "A Subordinated Stochastic Process Model with Finite Variance for Speculative Prices," Econometrica, Econometric Society, vol. 41(1), pages 135-155, January.
    46. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    47. Telli, Şahin & Chen, Hongzhuan, 2020. "Multifractal behavior in return and volatility series of Bitcoin and gold in comparison," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    48. Conghui Chen & Lanlan Liu & Ningru Zhao, 2020. "Fear Sentiment, Uncertainty, and Bitcoin Price Dynamics: The Case of COVID-19," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 56(10), pages 2298-2309, August.
    49. Shen, Dehua & Li, Xiao & Zhang, Wei, 2017. "Baidu news coverage and its impacts on order imbalance and large-size trade of Chinese stocks," Finance Research Letters, Elsevier, vol. 23(C), pages 210-216.
    50. Corbet, Shaen & Lucey, Brian & Peat, Maurice & Vigne, Samuel, 2018. "Bitcoin Futures—What use are they?," Economics Letters, Elsevier, vol. 172(C), pages 23-27.
    51. Yukun Liu & Aleh Tsyvinski, 2021. "Risks and Returns of Cryptocurrency," The Review of Financial Studies, Society for Financial Studies, vol. 34(6), pages 2689-2727.
    52. Kao, Yu-Sheng & Zhao, Kai & Chuang, Hwei-Lin & Ku, Yu-Cheng, 2024. "The asymmetric relationships between the Bitcoin futures’ return, volatility, and trading volume," International Review of Economics & Finance, Elsevier, vol. 89(PA), pages 524-542.
    53. Sebastião, Helder & Godinho, Pedro, 2020. "Bitcoin futures: An effective tool for hedging cryptocurrencies," Finance Research Letters, Elsevier, vol. 33(C).
    54. Copeland, Thomas E, 1976. "A Model of Asset Trading under the Assumption of Sequential Information Arrival," Journal of Finance, American Finance Association, vol. 31(4), pages 1149-1168, September.
    55. Andersen, Torben G, 1996. "Return Volatility and Trading Volume: An Information Flow Interpretation of Stochastic Volatility," Journal of Finance, American Finance Association, vol. 51(1), pages 169-204, March.
    56. Kalev, Petko S. & Liu, Wai-Man & Pham, Peter K. & Jarnecic, Elvis, 2004. "Public information arrival and volatility of intraday stock returns," Journal of Banking & Finance, Elsevier, vol. 28(6), pages 1441-1467, June.
    57. Li, Yiting & Wang, Chien-Chiang, 2022. "A search-theoretic model of double-spending fraud," Journal of Economic Dynamics and Control, Elsevier, vol. 142(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kao, Yu-Sheng & Zhao, Kai & Chuang, Hwei-Lin & Ku, Yu-Cheng, 2024. "The asymmetric relationships between the Bitcoin futures’ return, volatility, and trading volume," International Review of Economics & Finance, Elsevier, vol. 89(PA), pages 524-542.
    2. Chou, Ke-Hsin & Day, Min-Yuh & Chiu, Chien-Liang, 2023. "Do bitcoin news information flow and return volatility fit the sequential information arrival hypothesis and the mixture of distribution hypothesis?," International Review of Economics & Finance, Elsevier, vol. 88(C), pages 365-385.
    3. Ashok Chanabasangouda Patil & Shailesh Rastogi, 2019. "Time-Varying Price–Volume Relationship and Adaptive Market Efficiency: A Survey of the Empirical Literature," JRFM, MDPI, vol. 12(2), pages 1-18, June.
    4. Kao, Yu-Sheng & Chuang, Hwei-Lin & Ku, Yu-Cheng, 2020. "The empirical linkages among market returns, return volatility, and trading volume: Evidence from the S&P 500 VIX Futures," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).
    5. Yamani, Ehab, 2023. "Return–volume nexus in financial markets: A survey of research," Research in International Business and Finance, Elsevier, vol. 65(C).
    6. Shen, Dehua & Li, Xiao & Zhang, Wei, 2018. "Baidu news information flow and return volatility: Evidence for the Sequential Information Arrival Hypothesis," Economic Modelling, Elsevier, vol. 69(C), pages 127-133.
    7. Apostolakis, George N., 2024. "Bitcoin price volatility transmission between spot and futures markets," International Review of Financial Analysis, Elsevier, vol. 94(C).
    8. Saswat Patra & Malay Bhattacharyya, 2021. "Does volume really matter? A risk management perspective using cross‐country evidence," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(1), pages 118-135, January.
    9. Pengfei Wang & Wei Zhang & Xiao Li & Dehua Shen, 2019. "Trading volume and return volatility of Bitcoin market: evidence for the sequential information arrival hypothesis," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 14(2), pages 377-418, June.
    10. Taylor, Nicholas, 2008. "Can idiosyncratic volatility help forecast stock market volatility?," International Journal of Forecasting, Elsevier, vol. 24(3), pages 462-479.
    11. Do, Hung Xuan & Brooks, Robert & Treepongkaruna, Sirimon & Wu, Eliza, 2014. "How does trading volume affect financial return distributions?," International Review of Financial Analysis, Elsevier, vol. 35(C), pages 190-206.
    12. Abhinava Tripathi, 2021. "The Arrival of Information and Price Adjustment Across Extreme Quantiles: Global Evidence," IIM Kozhikode Society & Management Review, , vol. 10(1), pages 7-19, January.
    13. Loredana Ureche-Rangau & Quiterie de Rorthays, 2009. "More on the volatility-trading volume relationship in emerging markets: The Chinese stock market," Journal of Applied Statistics, Taylor & Francis Journals, vol. 36(7), pages 779-799.
    14. Farag, Hisham & Cressy, Robert, 2011. "Do regulatory policies affect the flow of information in emerging markets?," Research in International Business and Finance, Elsevier, vol. 25(3), pages 238-254, September.
    15. Zhang, Zuochao & Shen, Dehua, 2024. "Internet stock message boards and the price–volume relationship: Registered users vs non-registered users," Finance Research Letters, Elsevier, vol. 61(C).
    16. Sarika Mahajan & Balwinder Singh, 2008. "An Empirical Analysis of Stock Price-Volume Relationship in Indian Stock Market," Vision, , vol. 12(3), pages 1-13, July.
    17. Chuang, Wen-I & Liu, Hsiang-Hsi & Susmel, Rauli, 2012. "The bivariate GARCH approach to investigating the relation between stock returns, trading volume, and return volatility," Global Finance Journal, Elsevier, vol. 23(1), pages 1-15.
    18. Cook, Steve & Watson, Duncan, 2017. "Revisiting the returns–volume relationship: Time variation, alternative measures and the financial crisis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 470(C), pages 228-235.
    19. Ahadzie, Richard Mawulawoe & Jeyasreedharan, Nagaratnam, 2020. "Trading volume and realized higher-order moments in the Australian stock market," Journal of Behavioral and Experimental Finance, Elsevier, vol. 28(C).
    20. Shimeng Shi & Jia Zhai & Yingying Wu, 2024. "Informational inefficiency on bitcoin futures," The European Journal of Finance, Taylor & Francis Journals, vol. 30(6), pages 642-667, April.

    More about this item

    Keywords

    Bitcoin futures; Sentiment analysis; Natural language processing; COVID-19; Decentralized finance;
    All these keywords.

    JEL classification:

    • D53 - Microeconomics - - General Equilibrium and Disequilibrium - - - Financial Markets
    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)
    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation
    • G40 - Financial Economics - - Behavioral Finance - - - General
    • G41 - Financial Economics - - Behavioral Finance - - - Role and Effects of Psychological, Emotional, Social, and Cognitive Factors on Decision Making in Financial Markets

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecofin:v:72:y:2024:i:c:s1062940824000846. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/620163 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.