IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Numerical computation of the optimal vector field: Exemplified by a fishery model

  • Grass, D.
Registered author(s):

    Numerous optimal control models analyzed in economics are formulated as discounted infinite time horizon problems, where the defining functions are nonlinear as well in the states as in the controls. As a consequence solutions can often only be found numerically. Moreover, the long run optimal solutions are mostly limit sets like equilibria or limit cycles. Using these specific solutions a BVP approach together with a continuation technique is used to calculate the parameter dependent dynamic structure of the optimal vector field. We use a one dimensional optimal control model of a fishery to exemplify the numerical techniques. But these methods are applicable to a much wider class of optimal control problems with a moderate number of state and control variables.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://www.sciencedirect.com/science/article/pii/S0165188912000966
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal Journal of Economic Dynamics and Control.

    Volume (Year): 36 (2012)
    Issue (Month): 10 ()
    Pages: 1626-1658

    as
    in new window

    Handle: RePEc:eee:dyncon:v:36:y:2012:i:10:p:1626-1658
    Contact details of provider: Web page: http://www.elsevier.com/locate/jedc

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Levy, Amnon & Neri, Frank, 2004. "Macroeconomic Aspects of Substance Abuse: Diffusion, Productivity and Optimal Control," Economics Working Papers wp04-22, School of Economics, University of Wollongong, NSW, Australia.
    2. Anne-Sophie Crépin, 2007. "Using Fast and Slow Processes to Manage Resources with Thresholds," Environmental & Resource Economics, European Association of Environmental and Resource Economists, vol. 36(2), pages 191-213, February.
    3. Peter Kunkel & Oskar von dem Hagen, 2000. "Numerical Solution of Infinite-Horizon Optimal-Control Problems," Computational Economics, Society for Computational Economics, vol. 16(3), pages 189-205, December.
    4. Michel, P., 1980. "On the Transversality Condition in Infinite Horizon Optimal Problems," Cahiers de recherche 8024, Universite de Montreal, Departement de sciences economiques.
    5. Kiseleva, T. & Wagener, F.O.O., 2011. "Bifurcations of Optimal Vector Fields," CeNDEF Working Papers 11-05, Universiteit van Amsterdam, Center for Nonlinear Dynamics in Economics and Finance.
    6. Caulkins, Jonathan P. & Feichtinger, Gustav & Grass, Dieter & Hartl, Richard F. & Kort, Peter M., 2011. "Two state capital accumulation with heterogenous products: Disruptive vs. non-disruptive goods," Journal of Economic Dynamics and Control, Elsevier, vol. 35(4), pages 462-478, April.
    7. Wagener, F. O. O., 2003. "Skiba points and heteroclinic bifurcations, with applications to the shallow lake system," Journal of Economic Dynamics and Control, Elsevier, vol. 27(9), pages 1533-1561, July.
    8. Hartl, Richard F., 1987. "A simple proof of the monotonicity of the state trajectories in autonomous control problems," Journal of Economic Theory, Elsevier, vol. 41(1), pages 211-215, February.
    9. Halkin, Hubert, 1974. "Necessary Conditions for Optimal Control Problems with Infinite Horizons," Econometrica, Econometric Society, vol. 42(2), pages 267-72, March.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:dyncon:v:36:y:2012:i:10:p:1626-1658. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.