IDEAS home Printed from
   My bibliography  Save this article

Approximate Bayesian inference in spatial GLMM with skew normal latent variables


  • Hosseini, Fatemeh
  • Eidsvik, Jo
  • Mohammadzadeh, Mohsen


Spatial generalized linear mixed models are common in applied statistics. Most users are satisfied using a Gaussian distribution for the spatial latent variables in this model, but it is unclear whether the Gaussian assumption holds. Wrong Gaussian assumptions cause bias in the parameter estimates and affect the accuracy of spatial predictions. Thus, there is a need for more flexible priors for the latent variables, and to perform efficient inference and spatial prediction in the resulting models. In this paper we use a skew normal prior distribution for the spatial latent variables. We propose new approximate Bayesian methods for the inference and spatial prediction in this model. A key ingredient in our approximations is using the closed skew normal distribution to approximate the full conditional for the latent variables. Our approximate inference and spatial prediction methods are fast and deterministic, using no sampling based strategies. The results indicate that the skew normal prior model can give better predictions than the normal model, while avoiding overfitting.

Suggested Citation

  • Hosseini, Fatemeh & Eidsvik, Jo & Mohammadzadeh, Mohsen, 2011. "Approximate Bayesian inference in spatial GLMM with skew normal latent variables," Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1791-1806, April.
  • Handle: RePEc:eee:csdana:v:55:y:2011:i:4:p:1791-1806

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Jo Eidsvik & Sara Martino & Håvard Rue, 2009. "Approximate Bayesian Inference in Spatial Generalized Linear Mixed Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(1), pages 1-22, March.
    2. Gelfand, Alan E. & Kottas, Athanasios & MacEachern, Steven N., 2005. "Bayesian Nonparametric Spatial Modeling With Dirichlet Process Mixing," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 1021-1035, September.
    3. Quinn McNemar, 1947. "Note on the sampling error of the difference between correlated proportions or percentages," Psychometrika, Springer;The Psychometric Society, vol. 12(2), pages 153-157, June.
    4. Håvard Rue & Sara Martino & Nicolas Chopin, 2009. "Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(2), pages 319-392, April.
    5. Varin, Cristiano & Host, Gudmund & Skare, Oivind, 2005. "Pairwise likelihood inference in spatial generalized linear mixed models," Computational Statistics & Data Analysis, Elsevier, vol. 49(4), pages 1173-1191, June.
    6. Komárek, Arnost & Lesaffre, Emmanuel, 2008. "Generalized linear mixed model with a penalized Gaussian mixture as a random effects distribution," Computational Statistics & Data Analysis, Elsevier, vol. 52(7), pages 3441-3458, March.
    7. Ainsworth, L.M. & Dean, C.B., 2006. "Approximate inference for disease mapping," Computational Statistics & Data Analysis, Elsevier, vol. 50(10), pages 2552-2570, June.
    8. Kim, Ji-Hyun, 2009. "Estimating classification error rate: Repeated cross-validation, repeated hold-out and bootstrap," Computational Statistics & Data Analysis, Elsevier, vol. 53(11), pages 3735-3745, September.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Marco Minozzo, 2011. "On the existence of some skew normal stationary processes," Working Papers 20/2011, University of Verona, Department of Economics.
    2. Baghishani, Hossein & Mohammadzadeh, Mohsen, 2011. "A data cloning algorithm for computing maximum likelihood estimates in spatial generalized linear mixed models," Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1748-1759, April.
    3. Martins, Thiago G. & Simpson, Daniel & Lindgren, Finn & Rue, Håvard, 2013. "Bayesian computing with INLA: New features," Computational Statistics & Data Analysis, Elsevier, vol. 67(C), pages 68-83.
    4. Mahmoudian, Behzad, 2018. "On the existence of some skew-Gaussian random field models," Statistics & Probability Letters, Elsevier, vol. 137(C), pages 331-335.
    5. Jiangyan Wang & Miao Yang & Anandamayee Majumdar, 2018. "Comparative study and sensitivity analysis of skewed spatial processes," Computational Statistics, Springer, vol. 33(1), pages 75-98, March.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:55:y:2011:i:4:p:1791-1806. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.