IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v56y2012i6p1362-1380.html
   My bibliography  Save this article

Approximate Bayesian inference for large spatial datasets using predictive process models

Author

Listed:
  • Eidsvik, Jo
  • Finley, Andrew O.
  • Banerjee, Sudipto
  • Rue, Håvard

Abstract

The challenges of estimating hierarchical spatial models to large datasets are addressed. With the increasing availability of geocoded scientific data, hierarchical models involving spatial processes have become a popular method for carrying out spatial inference. Such models are customarily estimated using Markov chain Monte Carlo algorithms that, while immensely flexible, can become prohibitively expensive. In particular, fitting hierarchical spatial models often involves expensive decompositions of dense matrices whose computational complexity increases in cubic order with the number of spatial locations. Such matrix computations are required in each iteration of the Markov chain Monte Carlo algorithm, rendering them infeasible for large spatial datasets. The computational challenges in analyzing large spatial datasets are considered by merging two recent developments. First, the predictive process model is used as a reduced-rank spatial process, to diminish the dimensionality of the model. Then a computational framework is developed for estimating predictive process models using the integrated nested Laplace approximation. The settings where the first stage likelihood is Gaussian or non-Gaussian are discussed. Issues such as predictions and model comparisons are also discussed. Results are presented for synthetic data and several environmental datasets.

Suggested Citation

  • Eidsvik, Jo & Finley, Andrew O. & Banerjee, Sudipto & Rue, Håvard, 2012. "Approximate Bayesian inference for large spatial datasets using predictive process models," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1362-1380.
  • Handle: RePEc:eee:csdana:v:56:y:2012:i:6:p:1362-1380
    DOI: 10.1016/j.csda.2011.10.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947311003938
    Download Restriction: Full text for ScienceDirect subscribers only.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Banerjee, Sudipto & Finley, Andrew O. & Waldmann, Patrik & Ericsson, Tore, 2010. "Hierarchical Spatial Process Models for Multiple Traits in Large Genetic Trials," Journal of the American Statistical Association, American Statistical Association, vol. 105(490), pages 506-521.
    2. Håvard Rue & Sara Martino & Nicolas Chopin, 2009. "Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(2), pages 319-392.
    3. Jo Eidsvik & Sara Martino & Håvard Rue, 2009. "Approximate Bayesian Inference in Spatial Generalized Linear Mixed Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(1), pages 1-22.
    4. Peter Diggle & Søren Lophaven, 2006. "Bayesian Geostatistical Design," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 33(1), pages 53-64.
    5. Varin, Cristiano & Host, Gudmund & Skare, Oivind, 2005. "Pairwise likelihood inference in spatial generalized linear mixed models," Computational Statistics & Data Analysis, Elsevier, vol. 49(4), pages 1173-1191, June.
    6. Ainsworth, L.M. & Dean, C.B., 2006. "Approximate inference for disease mapping," Computational Statistics & Data Analysis, Elsevier, vol. 50(10), pages 2552-2570, June.
    7. Michael L. Stein & Zhiyi Chi & Leah J. Welty, 2004. "Approximating likelihoods for large spatial data sets," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(2), pages 275-296.
    8. Kaufman, Cari G. & Schervish, Mark J. & Nychka, Douglas W., 2008. "Covariance Tapering for Likelihood-Based Estimation in Large Spatial Data Sets," Journal of the American Statistical Association, American Statistical Association, vol. 103(484), pages 1545-1555.
    9. Crainiceanu, Ciprian M. & Diggle, Peter J. & Rowlingson, Barry, 2008. "Bivariate Binomial Spatial Modeling of Loa loa Prevalence in Tropical Africa," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 21-37, March.
    10. Sudipto Banerjee & Alan E. Gelfand & Andrew O. Finley & Huiyan Sang, 2008. "Gaussian predictive process models for large spatial data sets," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(4), pages 825-848.
    11. Gneiting, Tilmann & Raftery, Adrian E., 2007. "Strictly Proper Scoring Rules, Prediction, and Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 359-378, March.
    12. Fuentes, Montserrat, 2007. "Approximate Likelihood for Large Irregularly Spaced Spatial Data," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 321-331, March.
    13. E. E. Kammann & M. P. Wand, 2003. "Geoadditive models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 52(1), pages 1-18.
    14. Finley, Andrew O. & Sang, Huiyan & Banerjee, Sudipto & Gelfand, Alan E., 2009. "Improving the performance of predictive process modeling for large datasets," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 2873-2884, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jun, Mikyoung, 2014. "Matérn-based nonstationary cross-covariance models for global processes," Journal of Multivariate Analysis, Elsevier, vol. 128(C), pages 134-146.
    2. repec:bla:biomet:v:73:y:2017:i:3:p:759-768 is not listed on IDEAS
    3. Sandy Burden & Noel Cressie & David G. Steel, 2015. "The SAR Model for Very Large Datasets: A Reduced Rank Approach," Econometrics, MDPI, Open Access Journal, vol. 3(2), pages 1-22, May.
    4. Bivand, Roger & Gómez-Rubio, Virgilio & Rue, Håvard, 2015. "Spatial Data Analysis with R-INLA with Some Extensions," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 63(i20).
    5. Bolin, David & Lindgren, Finn, 2013. "A comparison between Markov approximations and other methods for large spatial data sets," Computational Statistics & Data Analysis, Elsevier, vol. 61(C), pages 7-21.
    6. Schmidt, Paul & Mühlau, Mark & Schmid, Volker, 2017. "Fitting large-scale structured additive regression models using Krylov subspace methods," Computational Statistics & Data Analysis, Elsevier, vol. 105(C), pages 59-75.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:56:y:2012:i:6:p:1362-1380. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/csda .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.