IDEAS home Printed from https://ideas.repec.org/a/jss/jstsof/v063i20.html
   My bibliography  Save this article

Spatial Data Analysis with R-INLA with Some Extensions

Author

Listed:
  • Bivand, Roger
  • Gómez-Rubio, Virgilio
  • Rue, Håvard

Abstract

The integrated nested Laplace approximation (INLA) provides an interesting way of approximating the posterior marginals of a wide range of Bayesian hierarchical models. This approximation is based on conducting a Laplace approximation of certain functions and numerical integration is extensively used to integrate some of the models parameters out. The R-INLA package offers an interface to INLA, providing a suitable framework for data analysis. Although the INLA methodology can deal with a large number of models, only the most relevant have been implemented within R-INLA. However, many other important models are not available for R-INLA yet. In this paper we show how to fit a number of spatial models with R-INLA, including its interaction with other R packages for data analysis. Secondly, we describe a novel method to extend the number of latent models available for the model parameters. Our approach is based on conditioning on one or several model parameters and fit these conditioned models with R-INLA. Then these models are combined using Bayesian model averaging to provide the final approximations to the posterior marginals of the model. Finally, we show some examples of the application of this technique in spatial statistics. It is worth noting that our approach can be extended to a number of other fields, and not only spatial statistics.

Suggested Citation

  • Bivand, Roger & Gómez-Rubio, Virgilio & Rue, Håvard, 2015. "Spatial Data Analysis with R-INLA with Some Extensions," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 63(i20).
  • Handle: RePEc:jss:jstsof:v:063:i20
    DOI: http://hdl.handle.net/10.18637/jss.v063.i20
    as

    Download full text from publisher

    File URL: https://www.jstatsoft.org/index.php/jss/article/view/v063i20/v63i20.pdf
    Download Restriction: no

    File URL: https://www.jstatsoft.org/index.php/jss/article/downloadSuppFile/v063i20/INLABMA_0.1-6.tar.gz
    Download Restriction: no

    File URL: https://www.jstatsoft.org/index.php/jss/article/downloadSuppFile/v063i20/v63i20.R
    Download Restriction: no

    File URL: https://libkey.io/http://hdl.handle.net/10.18637/jss.v063.i20?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Michela Cameletti & Finn Lindgren & Daniel Simpson & Håvard Rue, 2013. "Spatio-temporal modeling of particulate matter concentration through the SPDE approach," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 97(2), pages 109-131, April.
    2. Ruiz-Cárdenas, Ramiro & Krainski, Elias T. & Rue, Håvard, 2012. "Direct fitting of dynamic models using integrated nested Laplace approximations — INLA," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1808-1828.
    3. Duncan Lee & Richard Mitchell, 2013. "Locally adaptive spatial smoothing using conditional auto-regressive models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 62(4), pages 593-608, August.
    4. Lee, Duncan, 2013. "CARBayes: An R Package for Bayesian Spatial Modeling with Conditional Autoregressive Priors," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 55(i13).
    5. Håvard Rue & Sara Martino & Nicolas Chopin, 2009. "Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(2), pages 319-392, April.
    6. Eidsvik, Jo & Finley, Andrew O. & Banerjee, Sudipto & Rue, Håvard, 2012. "Approximate Bayesian inference for large spatial datasets using predictive process models," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1362-1380.
    7. Pace, R Kelley & Gilley, Otis W, 1997. "Using the Spatial Configuration of the Data to Improve Estimation," The Journal of Real Estate Finance and Economics, Springer, vol. 14(3), pages 333-340, May.
    8. James P. LeSage & R. Kelley Pace & Nina Lam & Richard Campanella & Xingjian Liu, 2011. "New Orleans business recovery in the aftermath of Hurricane Katrina," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 174(4), pages 1007-1027, October.
    9. Birgit Schrödle & Leonhard Held & Andrea Riebler & Jürg Danuser, 2011. "Using integrated nested Laplace approximations for the evaluation of veterinary surveillance data from Switzerland: a case‐study," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 60(2), pages 261-279, March.
    10. Hossain, Md. Monir & Lawson, Andrew B., 2009. "Approximate methods in Bayesian point process spatial models," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 2831-2842, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Virgilio Gómez-Rubio & Roger S. Bivand & Håvard Rue, 2021. "Estimating Spatial Econometrics Models with Integrated Nested Laplace Approximation," Mathematics, MDPI, vol. 9(17), pages 1-23, August.
    2. Nikoline N. Knudsen & Jörg Schullehner & Birgitte Hansen & Lisbeth F. Jørgensen & Søren M. Kristiansen & Denitza D. Voutchkova & Thomas A. Gerds & Per K. Andersen & Kristine Bihrmann & Morten Grønbæk , 2017. "Lithium in Drinking Water and Incidence of Suicide: A Nationwide Individual-Level Cohort Study with 22 Years of Follow-Up," IJERPH, MDPI, vol. 14(6), pages 1-13, June.
    3. Leonardo Padilla & Bernado Lagos‐Álvarez & Jorge Mateu & Emilio Porcu, 2020. "Space‐time autoregressive estimation and prediction with missing data based on Kalman filtering," Environmetrics, John Wiley & Sons, Ltd., vol. 31(7), November.
    4. Mayer Alvo & Jingrui Mu, 2023. "COVID-19 Data Analysis Using Bayesian Models and Nonparametric Geostatistical Models," Mathematics, MDPI, vol. 11(6), pages 1-13, March.
    5. Ruiman Zhong & Paula Moraga, 2024. "Bayesian Hierarchical Models for the Combination of Spatially Misaligned Data: A Comparison of Melding and Downscaler Approaches Using INLA and SPDE," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 29(1), pages 110-129, March.
    6. Braulio-Gonzalo, Marta & Bovea, María D. & Jorge-Ortiz, Andrea & Juan, Pablo, 2021. "Which is the best-fit response variable for modelling the energy consumption of households? An analysis based on survey data," Energy, Elsevier, vol. 231(C).
    7. I Gede Nyoman Mindra Jaya & Henk Folmer, 2024. "High-Resolution Spatiotemporal Forecasting with Missing Observations Including an Application to Daily Particulate Matter 2.5 Concentrations in Jakarta Province, Indonesia," Mathematics, MDPI, vol. 12(18), pages 1-29, September.
    8. Chan, Joshua C.C., 2013. "Moving average stochastic volatility models with application to inflation forecast," Journal of Econometrics, Elsevier, vol. 176(2), pages 162-172.
    9. Athanasios C. Micheas & Jiaxun Chen, 2018. "sppmix: Poisson point process modeling using normal mixture models," Computational Statistics, Springer, vol. 33(4), pages 1767-1798, December.
    10. Jacqueline D. Seufert & Andre Python & Christoph Weisser & Elías Cisneros & Krisztina Kis‐Katos & Thomas Kneib, 2022. "Mapping ex ante risks of COVID‐19 in Indonesia using a Bayesian geostatistical model on airport network data," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(4), pages 2121-2155, October.
    11. Zhang, Shen & Liu, Xin & Tang, Jinjun & Cheng, Shaowu & Qi, Yong & Wang, Yinhai, 2018. "Spatio-temporal modeling of destination choice behavior through the Bayesian hierarchical approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 537-551.
    12. Zammit-Mangion, Andrew & Rougier, Jonathan, 2018. "A sparse linear algebra algorithm for fast computation of prediction variances with Gaussian Markov random fields," Computational Statistics & Data Analysis, Elsevier, vol. 123(C), pages 116-130.
    13. Márcio Poletti Laurini, 2017. "A spatial error model with continuous random effects and an application to growth convergence," Journal of Geographical Systems, Springer, vol. 19(4), pages 371-398, October.
    14. Somnath Chaudhuri & Gerard Giménez-Adsuar & Marc Saez & Maria A. Barceló, 2022. "PandemonCAT: Monitoring the COVID-19 Pandemic in Catalonia, Spain," IJERPH, MDPI, vol. 19(8), pages 1-22, April.
    15. Vitor Dias Rocio & Márcio Poletti Laurini, 2023. "Bayesian spatio-temporal modeling of real estate launch prices," Journal of Spatial Econometrics, Springer, vol. 4(1), pages 1-47, December.
    16. Gressani, Oswaldo & Lambert, Philippe, 2016. "Fast Bayesian inference in semi-parametric P-spline cure survival models using Laplace approximations," LIDAM Discussion Papers ISBA 2016041, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    17. Ferreira, Marco A.R. & Porter, Erica M. & Franck, Christopher T., 2021. "Fast and scalable computations for Gaussian hierarchical models with intrinsic conditional autoregressive spatial random effects," Computational Statistics & Data Analysis, Elsevier, vol. 162(C).
    18. Luis A. Barboza & Julien Emile-Geay & Bo Li & Wan He, 2019. "Efficient Reconstructions of Common Era Climate via Integrated Nested Laplace Approximations," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(3), pages 535-554, September.
    19. Gerber, Florian & Furrer, Reinhard, 2015. "Pitfalls in the Implementation of Bayesian Hierarchical Modeling of Areal Count Data: An Illustration Using BYM and Leroux Models," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 63(c01).
    20. Gressani, Oswaldo & Lambert, Philippe, 2018. "Fast Bayesian inference using Laplace approximations in a flexible promotion time cure model based on P-splines," Computational Statistics & Data Analysis, Elsevier, vol. 124(C), pages 151-167.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jss:jstsof:v:063:i20. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: http://www.jstatsoft.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.