sppmix: Poisson point process modeling using normal mixture models
Author
Abstract
Suggested Citation
DOI: 10.1007/s00180-018-0805-z
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Eddelbuettel, Dirk & Sanderson, Conrad, 2014. "RcppArmadillo: Accelerating R with high-performance C++ linear algebra," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 1054-1063.
- Taylor, Benjamin M. & Davies, Tilman M. & Rowlingson, Barry S. & Diggle, Peter J., 2015. "Bayesian Inference and Data Augmentation Schemes for Spatial, Spatiotemporal and Multivariate Log-Gaussian Cox Processes in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 63(i07).
- Sylvia. Richardson & Peter J. Green, 1997. "On Bayesian Analysis of Mixtures with an Unknown Number of Components (with discussion)," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 59(4), pages 731-792.
- Jesper Møller & Kateřina Helisová, 2010. "Likelihood Inference for Unions of Interacting Discs," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 37(3), pages 365-381, September.
- Taylor, Benjamin M. & Davies, Tilman M. & Rowlingson, Barry S. & Diggle, Peter J., 2013. "lgcp: An R Package for Inference with Spatial and Spatio-Temporal Log-Gaussian Cox Processes," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 52(i04).
- Zhengyi Zhou & David S. Matteson & Dawn B. Woodard & Shane G. Henderson & Athanasios C. Micheas, 2015. "A Spatio-Temporal Point Process Model for Ambulance Demand," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 6-15, March.
- Athanasios Christou Micheas, 2014. "Hierarchical Bayesian modeling of marked non-homogeneous Poisson processes with finite mixtures and inclusion of covariate information," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(12), pages 2596-2615, December.
- Olivier Cappé & Christian P. Robert & Tobias Rydén, 2003. "Reversible jump, birth‐and‐death and more general continuous time Markov chain Monte Carlo samplers," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(3), pages 679-700, August.
- Jesper Møller & Rasmus P. Waagepetersen, 2007. "Modern Statistics for Spatial Point Processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 34(4), pages 643-684, December.
- Håvard Rue & Sara Martino & Nicolas Chopin, 2009. "Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(2), pages 319-392, April.
- Stephen L. Rathbun & Saul Shiffman & Chad J. Gwaltney, 2007. "Modelling the effects of partially observed covariates on Poisson process intensity," Biometrika, Biometrika Trust, vol. 94(1), pages 153-165.
- Hossain, Md. Monir & Lawson, Andrew B., 2009. "Approximate methods in Bayesian point process spatial models," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 2831-2842, June.
- repec:dau:papers:123456789/6069 is not listed on IDEAS
- Baddeley, Adrian & Turner, Rolf, 2005. "spatstat: An R Package for Analyzing Spatial Point Patterns," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 12(i06).
- repec:dau:papers:123456789/6040 is not listed on IDEAS
- Finn Lindgren & Håvard Rue & Johan Lindström, 2011. "An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 73(4), pages 423-498, September.
- Eddelbuettel, Dirk & Francois, Romain, 2011. "Rcpp: Seamless R and C++ Integration," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 40(i08).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Weichao Wu & Athanasios C. Micheas, 2024. "A New Construction of Covariance Functions for Gaussian Random Fields," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 86(1), pages 530-574, February.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Athanasios Christou Micheas, 2014. "Hierarchical Bayesian modeling of marked non-homogeneous Poisson processes with finite mixtures and inclusion of covariate information," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(12), pages 2596-2615, December.
- A. C. Micheas, 2025. "Random mixture Cox point processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 77(2), pages 289-330, April.
- Janine B. Illian & David F. R. P. Burslem, 2017. "Improving the usability of spatial point process methodology: an interdisciplinary dialogue between statistics and ecology," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 101(4), pages 495-520, October.
- Brown, Patrick E., 2015. "Model-Based Geostatistics the Easy Way," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 63(i12).
- Taylor, Benjamin M. & Rowlingson, Barry S., 2017. "spatsurv: An R Package for Bayesian Inference with Spatial Survival Models," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 77(i04).
- Pebesma, Edzer & Bivand, Roger & Ribeiro, Paulo Justiniano, 2015. "Software for Spatial Statistics," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 63(i01).
- Taylor, Benjamin M. & Davies, Tilman M. & Rowlingson, Barry S. & Diggle, Peter J., 2015. "Bayesian Inference and Data Augmentation Schemes for Spatial, Spatiotemporal and Multivariate Log-Gaussian Cox Processes in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 63(i07).
- Humphreys, John M. & Elsner, James B. & Jagger, Thomas H. & Pau, Stephanie, 2017. "A Bayesian geostatistical approach to modeling global distributions of Lygodium microphyllum under projected climate warming," Ecological Modelling, Elsevier, vol. 363(C), pages 192-206.
- John O'Sullivan & Conor Sweeney & Andrew C. Parnell, 2020. "Bayesian spatial extreme value analysis of maximum temperatures in County Dublin, Ireland," Environmetrics, John Wiley & Sons, Ltd., vol. 31(5), August.
- Weichao Wu & Athanasios C. Micheas, 2024. "A New Construction of Covariance Functions for Gaussian Random Fields," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 86(1), pages 530-574, February.
- Jing, Liang & De Oliveira, Victor, 2015. "geoCount: An R Package for the Analysis of Geostatistical Count Data," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 63(i11).
- Kenneth A. Flagg & Andrew Hoegh & John J. Borkowski, 2020. "Modeling Partially Surveyed Point Process Data: Inferring Spatial Point Intensity of Geomagnetic Anomalies," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 25(2), pages 186-205, June.
- Williamson, Laura D. & Scott, Beth E. & Laxton, Megan & Illian, Janine B. & Todd, Victoria L.G. & Miller, Peter I. & Brookes, Kate L., 2022. "Comparing distribution of harbour porpoise using generalized additive models and hierarchical Bayesian models with integrated nested laplace approximation," Ecological Modelling, Elsevier, vol. 470(C).
- Wilson J. Wright & Peter N. Neitlich & Alyssa E. Shiel & Mevin B. Hooten, 2022. "Mechanistic spatial models for heavy metal pollution," Environmetrics, John Wiley & Sons, Ltd., vol. 33(8), December.
- Jesper Møller & Jakob G. Rasmussen, 2024. "Cox processes driven by transformed Gaussian processes on linear networks—A review and new contributions," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 51(3), pages 1288-1322, September.
- Carson, Stuart & Mills Flemming, Joanna, 2014. "Seal encounters at sea: A contemporary spatial approach using R-INLA," Ecological Modelling, Elsevier, vol. 291(C), pages 175-181.
- Chen, Yewen & Chang, Xiaohui & Luo, Fangzhi & Huang, Hui, 2023. "Additive dynamic models for correcting numerical model outputs," Computational Statistics & Data Analysis, Elsevier, vol. 187(C).
- Zilber, Daniel & Katzfuss, Matthias, 2021. "Vecchia–Laplace approximations of generalized Gaussian processes for big non-Gaussian spatial data," Computational Statistics & Data Analysis, Elsevier, vol. 153(C).
- Shen, Yunyi & Olson, Erik R. & Van Deelen, Timothy R., 2021. "Spatially explicit modeling of community occupancy using Markov Random Field models with imperfect observation: Mesocarnivores in Apostle Islands National Lakeshore," Ecological Modelling, Elsevier, vol. 459(C).
- Andre Python & Andreas Bender & Marta Blangiardo & Janine B. Illian & Ying Lin & Baoli Liu & Tim C.D. Lucas & Siwei Tan & Yingying Wen & Davit Svanidze & Jianwei Yin, 2022. "A downscaling approach to compare COVID‐19 count data from databases aggregated at different spatial scales," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(1), pages 202-218, January.
More about this item
Keywords
Birth–death MCMC; C++ programming language; Data-augmentation MCMC; Hierarchical Bayesian models; Marked point process via conditioning; Poisson point process; R programming language;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:33:y:2018:i:4:d:10.1007_s00180-018-0805-z. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.