IDEAS home Printed from https://ideas.repec.org/a/bla/jorssb/v70y2008i4p825-848.html
   My bibliography  Save this article

Gaussian predictive process models for large spatial data sets

Author

Listed:
  • Sudipto Banerjee
  • Alan E. Gelfand
  • Andrew O. Finley
  • Huiyan Sang

Abstract

With scientific data available at geocoded locations, investigators are increasingly turning to spatial process models for carrying out statistical inference. Over the last decade, hierarchical models implemented through Markov chain Monte Carlo methods have become especially popular for spatial modelling, given their flexibility and power to fit models that would be infeasible with classical methods as well as their avoidance of possibly inappropriate asymptotics. However, fitting hierarchical spatial models often involves expensive matrix decompositions whose computational complexity increases in cubic order with the number of spatial locations, rendering such models infeasible for large spatial data sets. This computational burden is exacerbated in multivariate settings with several spatially dependent response variables. It is also aggravated when data are collected at frequent time points and spatiotemporal process models are used. With regard to this challenge, our contribution is to work with what we call predictive process models for spatial and spatiotemporal data. Every spatial (or spatiotemporal) process induces a predictive process model (in fact, arbitrarily many of them). The latter models project process realizations of the former to a lower dimensional subspace, thereby reducing the computational burden. Hence, we achieve the flexibility to accommodate non-stationary, non-Gaussian, possibly multivariate, possibly spatiotemporal processes in the context of large data sets. We discuss attractive theoretical properties of these predictive processes. We also provide a computational template encompassing these diverse settings. Finally, we illustrate the approach with simulated and real data sets. Copyright (c) 2008 Royal Statistical Society.

Suggested Citation

  • Sudipto Banerjee & Alan E. Gelfand & Andrew O. Finley & Huiyan Sang, 2008. "Gaussian predictive process models for large spatial data sets," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(4), pages 825-848.
  • Handle: RePEc:bla:jorssb:v:70:y:2008:i:4:p:825-848
    as

    Download full text from publisher

    File URL: http://www.blackwell-synergy.com/doi/abs/10.1111/j.1467-9868.2008.00663.x
    File Function: link to full text
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ruppert,David & Wand,M. P. & Carroll,R. J., 2003. "Semiparametric Regression," Cambridge Books, Cambridge University Press, number 9780521785167, August.
    2. Peter Diggle & Søren Lophaven, 2006. "Bayesian Geostatistical Design," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 33(1), pages 53-64.
    3. Stevens, Don L. & Olsen, Anthony R., 2004. "Spatially Balanced Sampling of Natural Resources," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 262-278, January.
    4. Noel Cressie & Gardar Johannesson, 2008. "Fixed rank kriging for very large spatial data sets," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(1), pages 209-226.
    5. Michael L. Stein, 2005. "Space-Time Covariance Functions," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 310-321, March.
    6. Michael L. Stein & Zhiyi Chi & Leah J. Welty, 2004. "Approximating likelihoods for large spatial data sets," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(2), pages 275-296.
    7. Ruppert,David & Wand,M. P. & Carroll,R. J., 2003. "Semiparametric Regression," Cambridge Books, Cambridge University Press, number 9780521780506, August.
    8. Paciorek, Christopher J., 2007. "Computational techniques for spatial logistic regression with large data sets," Computational Statistics & Data Analysis, Elsevier, vol. 51(8), pages 3631-3653, May.
    9. Fuentes, Montserrat, 2007. "Approximate Likelihood for Large Irregularly Spaced Spatial Data," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 321-331, March.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:70:y:2008:i:4:p:825-848. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley Content Delivery) or (Christopher F. Baum). General contact details of provider: http://edirc.repec.org/data/rssssea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.