IDEAS home Printed from https://ideas.repec.org/a/spr/jagbes/v28y2023i1d10.1007_s13253-022-00512-3.html
   My bibliography  Save this article

A Spatial Logistic Regression Model Based on a Valid Skew-Gaussian Latent Field

Author

Listed:
  • Vahid Tadayon

    (Higher Education Center of Eghlid)

  • Mohammad Mehdi Saber

    (Higher Education Center of Eghlid)

Abstract

Logistic regression is commonly used to estimate the association of one (or more) independent variable(s) with a binary- dependent outcome. In many applications latent sources are both spatially dependent and non-Gaussian; thus, it is desirable to exploit both properties jointly. Spatial logistic regression is a well-established technique of including spatial dependence in logistic regression models. In this paper, we develop a spatial logistic regression model based on a valid skew-Gaussian random field. For parameter estimation, we use a Monte Carlo extension of the EM algorithm along with an approximation based on the standard logistic function. A simulation study is applied in order to determine the performance of the proposed model and also to compare the results with a recently introduced model with established efficiency. The identifiability of the parameters is investigated as well. As an illustrative purpose, an application to the Meuse heavy metals dataset is presented. Supplementary materials accompanying this paper appear online.

Suggested Citation

  • Vahid Tadayon & Mohammad Mehdi Saber, 2023. "A Spatial Logistic Regression Model Based on a Valid Skew-Gaussian Latent Field," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 28(1), pages 59-73, March.
  • Handle: RePEc:spr:jagbes:v:28:y:2023:i:1:d:10.1007_s13253-022-00512-3
    DOI: 10.1007/s13253-022-00512-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13253-022-00512-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13253-022-00512-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Paciorek, Christopher J., 2007. "Computational techniques for spatial logistic regression with large data sets," Computational Statistics & Data Analysis, Elsevier, vol. 51(8), pages 3631-3653, May.
    2. Hosseini, Fatemeh & Eidsvik, Jo & Mohammadzadeh, Mohsen, 2011. "Approximate Bayesian inference in spatial GLMM with skew normal latent variables," Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1791-1806, April.
    3. Peter J. Diggle & Emanuele Giorgi, 2016. "Model-Based Geostatistics for Prevalence Mapping in Low-Resource Settings," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(515), pages 1096-1120, July.
    4. Won Chang & Murali Haran & Patrick Applegate & David Pollard, 2016. "Calibrating an Ice Sheet Model Using High-Dimensional Binary Spatial Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(513), pages 57-72, March.
    5. Mahmoudian, Behzad, 2018. "On the existence of some skew-Gaussian random field models," Statistics & Probability Letters, Elsevier, vol. 137(C), pages 331-335.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marco Minozzo & Luca Bagnato, 2021. "A unified skew‐normal geostatistical factor model," Environmetrics, John Wiley & Sons, Ltd., vol. 32(4), June.
    2. Reinaldo B. Arellano-Valle & Adelchi Azzalini, 2022. "Some properties of the unified skew-normal distribution," Statistical Papers, Springer, vol. 63(2), pages 461-487, April.
    3. Julius Ssempiira & Betty Nambuusi & John Kissa & Bosco Agaba & Fredrick Makumbi & Simon Kasasa & Penelope Vounatsou, 2017. "Geostatistical modelling of malaria indicator survey data to assess the effects of interventions on the geographical distribution of malaria prevalence in children less than 5 years in Uganda," PLOS ONE, Public Library of Science, vol. 12(4), pages 1-20, April.
    4. Jafari Khaledi, Majid & Zareifard, Hamid & Boojari, Hossein, 2023. "A spatial skew-Gaussian process with a specified covariance function," Statistics & Probability Letters, Elsevier, vol. 192(C).
    5. Martins, Thiago G. & Simpson, Daniel & Lindgren, Finn & Rue, Håvard, 2013. "Bayesian computing with INLA: New features," Computational Statistics & Data Analysis, Elsevier, vol. 67(C), pages 68-83.
    6. Weimann, Amy & Dai, Dajun & Oni, Tolu, 2016. "A cross-sectional and spatial analysis of the prevalence of multimorbidity and its association with socioeconomic disadvantage in South Africa: A comparison between 2008 and 2012," Social Science & Medicine, Elsevier, vol. 163(C), pages 144-156.
    7. Andrew O. Finley & Sudipto Banerjee & Patrik Waldmann & Tore Ericsson, 2009. "Hierarchical Spatial Modeling of Additive and Dominance Genetic Variance for Large Spatial Trial Datasets," Biometrics, The International Biometric Society, vol. 65(2), pages 441-451, June.
    8. Qian Ren & Sudipto Banerjee, 2013. "Hierarchical Factor Models for Large Spatially Misaligned Data: A Low-Rank Predictive Process Approach," Biometrics, The International Biometric Society, vol. 69(1), pages 19-30, March.
    9. Brian J. Reich & Montserrat Fuentes & Amy H. Herring & Kelly R. Evenson, 2010. "Bayesian Variable Selection for Multivariate Spatially Varying Coefficient Regression," Biometrics, The International Biometric Society, vol. 66(3), pages 772-782, September.
    10. Berrett, Candace & Calder, Catherine A., 2012. "Data augmentation strategies for the Bayesian spatial probit regression model," Computational Statistics & Data Analysis, Elsevier, vol. 56(3), pages 478-490.
    11. Chénangnon Frédéric Tovissodé & Aliou Diop & Romain Glèlè Kakaï, 2021. "Inference in skew generalized t-link models for clustered binary outcome via a parameter-expanded EM algorithm," PLOS ONE, Public Library of Science, vol. 16(4), pages 1-31, April.
    12. Huang Huang & Stefano Castruccio & Allison H. Baker & Marc G. Genton, 2023. "Saving Storage in Climate Ensembles: A Model-Based Stochastic Approach," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 28(2), pages 324-344, June.
    13. Jo Eidsvik & Sara Martino & Håvard Rue, 2009. "Approximate Bayesian Inference in Spatial Generalized Linear Mixed Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(1), pages 1-22, March.
    14. Liang, Shengde & Banerjee, Sudipto & Bushhouse, Sally & Finley, Andrew O. & Carlin, Bradley P., 2008. "Hierarchical multiresolution approaches for dense point-level breast cancer treatment data," Computational Statistics & Data Analysis, Elsevier, vol. 52(5), pages 2650-2668, January.
    15. Debashis Ghosh, 2021. "Surrogates: Gaussian Process Modeling, Design, and Optimization for the Applied Sciences," International Statistical Review, International Statistical Institute, vol. 89(1), pages 207-209, April.
    16. Samantha M. Roth & Ben Seiyon Lee & Sanjib Sharma & Iman Hosseini‐Shakib & Klaus Keller & Murali Haran, 2023. "Flood hazard model calibration using multiresolution model output," Environmetrics, John Wiley & Sons, Ltd., vol. 34(2), March.
    17. Benjamin F. Arnold & Francois Rerolle & Christine Tedijanto & Sammy M. Njenga & Mahbubur Rahman & Ayse Ercumen & Andrew Mertens & Amy J. Pickering & Audrie Lin & Charles D. Arnold & Kishor Das & Chris, 2024. "Geographic pair matching in large-scale cluster randomized trials," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    18. Jiangyan Wang & Miao Yang & Anandamayee Majumdar, 2018. "Comparative study and sensitivity analysis of skewed spatial processes," Computational Statistics, Springer, vol. 33(1), pages 75-98, March.
    19. Baghishani, Hossein & Mohammadzadeh, Mohsen, 2011. "A data cloning algorithm for computing maximum likelihood estimates in spatial generalized linear mixed models," Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1748-1759, April.
    20. Mahmoudian, Behzad, 2018. "On the existence of some skew-Gaussian random field models," Statistics & Probability Letters, Elsevier, vol. 137(C), pages 331-335.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jagbes:v:28:y:2023:i:1:d:10.1007_s13253-022-00512-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.