IDEAS home Printed from https://ideas.repec.org/a/spr/stpapr/v65y2024i2d10.1007_s00362-023-01419-y.html
   My bibliography  Save this article

A Hamiltonian Monte Carlo EM algorithm for generalized linear mixed models with spatial skew latent variables

Author

Listed:
  • Omid Karimi

    (Semnan University)

Abstract

Spatial generalized linear mixed models with skew latent variables are usually used to model discrete spatial responses that have some skewness. Since the likelihood function in these models is complex, the Monte Carlo EM algorithms are commonly applied to estimate the model parameters. In this paper, we use an approximately stationary skew Gaussian random field, which is more flexible than the Gaussian one, to analyze the skew discrete spatial responses. We also present a new hybrid EM algorithm using the Hamiltonian Monte Carlo method, which is both faster and more accurate than the Monte Carlo EM algorithm. The performance of the proposed skew model with a hybrid algorithm is evaluated through a simulation study and an application to the earthquake data of Iran. The simulation results indicate that the proposed Hamiltonian algorithm with the skew random field has better performance than the existing models. In addition, spatial prediction is presented through the proposed approach for the earthquake data on the entire map of Iran, where high-risk areas with the probability of large earthquakes are identified.

Suggested Citation

  • Omid Karimi, 2024. "A Hamiltonian Monte Carlo EM algorithm for generalized linear mixed models with spatial skew latent variables," Statistical Papers, Springer, vol. 65(2), pages 1065-1084, April.
  • Handle: RePEc:spr:stpapr:v:65:y:2024:i:2:d:10.1007_s00362-023-01419-y
    DOI: 10.1007/s00362-023-01419-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00362-023-01419-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00362-023-01419-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Varin, Cristiano & Host, Gudmund & Skare, Oivind, 2005. "Pairwise likelihood inference in spatial generalized linear mixed models," Computational Statistics & Data Analysis, Elsevier, vol. 49(4), pages 1173-1191, June.
    2. Torabi, Mahmoud, 2013. "Likelihood inference in generalized linear mixed measurement error models," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 549-557.
    3. Hosseini, Fatemeh & Eidsvik, Jo & Mohammadzadeh, Mohsen, 2011. "Approximate Bayesian inference in spatial GLMM with skew normal latent variables," Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1791-1806, April.
    4. Walder, Adam & Hanks, Ephraim M., 2020. "Bayesian analysis of spatial generalized linear mixed models with Laplace moving average random fields," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    5. Jo Eidsvik & Sara Martino & Håvard Rue, 2009. "Approximate Bayesian Inference in Spatial Generalized Linear Mixed Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(1), pages 1-22, March.
    6. Fatemeh Hosseini & Omid Karimi, 2019. "Approximate composite marginal likelihood inference in spatial generalized linear mixed models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 46(3), pages 542-558, February.
    7. Jiang, Xuejun & Fu, Yingzi & Jiang, Jiancheng & Li, Jingzhi, 2019. "Spatial distribution of the earthquake in Mainland China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 530(C).
    8. Hao Zhang, 2002. "On Estimation and Prediction for Spatial Generalized Linear Mixed Models," Biometrics, The International Biometric Society, vol. 58(1), pages 129-136, March.
    9. Omid Karimi & Mohsen Mohammadzadeh, 2012. "Bayesian spatial regression models with closed skew normal correlated errors and missing observations," Statistical Papers, Springer, vol. 53(1), pages 205-218, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Baghishani, Hossein & Mohammadzadeh, Mohsen, 2011. "A data cloning algorithm for computing maximum likelihood estimates in spatial generalized linear mixed models," Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1748-1759, April.
    2. Eidsvik, Jo & Finley, Andrew O. & Banerjee, Sudipto & Rue, Håvard, 2012. "Approximate Bayesian inference for large spatial datasets using predictive process models," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1362-1380.
    3. Hosseini, Fatemeh & Eidsvik, Jo & Mohammadzadeh, Mohsen, 2011. "Approximate Bayesian inference in spatial GLMM with skew normal latent variables," Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1791-1806, April.
    4. Marco Minozzo & Luca Bagnato, 2021. "A unified skew‐normal geostatistical factor model," Environmetrics, John Wiley & Sons, Ltd., vol. 32(4), June.
    5. Reinaldo B. Arellano-Valle & Adelchi Azzalini, 2022. "Some properties of the unified skew-normal distribution," Statistical Papers, Springer, vol. 63(2), pages 461-487, April.
    6. De Oliveira, Victor, 2013. "Hierarchical Poisson models for spatial count data," Journal of Multivariate Analysis, Elsevier, vol. 122(C), pages 393-408.
    7. Martins, Thiago G. & Simpson, Daniel & Lindgren, Finn & Rue, Håvard, 2013. "Bayesian computing with INLA: New features," Computational Statistics & Data Analysis, Elsevier, vol. 67(C), pages 68-83.
    8. Tatiyana V. Apanasovich & David Ruppert & Joanne R. Lupton & Natasa Popovic & Nancy D. Turner & Robert S. Chapkin & Raymond J. Carroll, 2008. "Aberrant Crypt Foci and Semiparametric Modeling of Correlated Binary Data," Biometrics, The International Biometric Society, vol. 64(2), pages 490-500, June.
    9. Cristiano Varin, 2008. "On composite marginal likelihoods," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 92(1), pages 1-28, February.
    10. Baghishani, Hossein & Mohammadzadeh, Mohsen, 2012. "Asymptotic normality of posterior distributions for generalized linear mixed models," Journal of Multivariate Analysis, Elsevier, vol. 111(C), pages 66-77.
    11. Majid Mojirsheibani & Timothy Reese, 2017. "Kernel regression estimation for incomplete data with applications," Statistical Papers, Springer, vol. 58(1), pages 185-209, March.
    12. Robert Richardson, 2022. "Spatial Generalized Linear Models with Non-Gaussian Translation Processes," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(1), pages 4-21, March.
    13. Badi H. Baltagi, 2008. "Forecasting with panel data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(2), pages 153-173.
    14. Rezaie, Javad & Eidsvik, Jo, 2014. "Kalman filter variants in the closed skew normal setting," Computational Statistics & Data Analysis, Elsevier, vol. 75(C), pages 1-14.
    15. Victor De Oliveira, 2013. "Poisson Kriging," Working Papers 0183mss, College of Business, University of Texas at San Antonio.
    16. Jaewoo Park & Sangwan Lee, 2022. "A projection‐based Laplace approximation for spatial latent variable models," Environmetrics, John Wiley & Sons, Ltd., vol. 33(1), February.
    17. Higgs, Megan Dailey & Hoeting, Jennifer A., 2010. "A clipped latent variable model for spatially correlated ordered categorical data," Computational Statistics & Data Analysis, Elsevier, vol. 54(8), pages 1999-2011, August.
    18. Soubeyrand, Samuel & Enjalbert, Jérôme & Sache, Ivan, 2008. "Accounting for roughness of circular processes: Using Gaussian random processes to model the anisotropic spread of airborne plant disease," Theoretical Population Biology, Elsevier, vol. 73(1), pages 92-103.
    19. Pierrette Chagneau & Frédéric Mortier & Nicolas Picard & Jean-Noël Bacro, 2011. "A Hierarchical Bayesian Model for Spatial Prediction of Multivariate Non-Gaussian Random Fields," Biometrics, The International Biometric Society, vol. 67(1), pages 97-105, March.
    20. Karunanayake, N. & Aimmanee, P. & Lohitvisate, W. & Makhanov, S.S., 2020. "Particle method for segmentation of breast tumors in ultrasound images," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 170(C), pages 257-284.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:65:y:2024:i:2:d:10.1007_s00362-023-01419-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.