IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v100y2016icp830-846.html
   My bibliography  Save this article

Income inequality decomposition using a finite mixture of log-normal distributions: A Bayesian approach

Author

Listed:
  • Lubrano, Michel
  • Ndoye, Abdoul Aziz Junior

Abstract

The log-normal distribution is convenient for modelling the income distribution, and it offers an analytical expression for most inequality indices that depends only on the shape parameter of the associated Lorenz curve. A decomposable inequality index can be implemented in the framework of a finite mixture of log-normal distributions so that overall inequality can be decomposed into within-subgroup and between-subgroup components. Using a Bayesian approach and a Gibbs sampler, a Rao-Blackwellization can improve inference results on decomposable income inequality indices. The very nature of the economic question can provide prior information so as to distinguish between the income groups and construct an asymmetric prior density which can reduce label switching. Data from the UK Family Expenditure Survey (FES) (1979 to 1996) are used in an extended empirical application.

Suggested Citation

  • Lubrano, Michel & Ndoye, Abdoul Aziz Junior, 2016. "Income inequality decomposition using a finite mixture of log-normal distributions: A Bayesian approach," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 830-846.
  • Handle: RePEc:eee:csdana:v:100:y:2016:i:c:p:830-846
    DOI: 10.1016/j.csda.2014.10.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947314003016
    Download Restriction: Full text for ScienceDirect subscribers only.

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Davidson, Russell & Flachaire, Emmanuel, 2007. "Asymptotic and bootstrap inference for inequality and poverty measures," Journal of Econometrics, Elsevier, vol. 141(1), pages 141-166, November.
    2. Paapaa, Richard & van Dijk, Herman K., 1998. "Distribution and mobility of wealth of nations," European Economic Review, Elsevier, vol. 42(7), pages 1269-1293, July.
    3. Shorrocks, A F, 1980. "The Class of Additively Decomposable Inequality Measures," Econometrica, Econometric Society, vol. 48(3), pages 613-625, April.
    4. Luc Bauwens & Michel Lubrano, 1998. "Bayesian inference on GARCH models using the Gibbs sampler," Econometrics Journal, Royal Economic Society, vol. 1(Conferenc), pages 23-46.
    5. Karim Abadir, 1999. "An introduction to hypergeometric functions for economists," Econometric Reviews, Taylor & Francis Journals, vol. 18(3), pages 287-330.
    6. Bourguignon, Francois, 1979. "Decomposable Income Inequality Measures," Econometrica, Econometric Society, vol. 47(4), pages 901-920, July.
    7. Russell Davidson & Jean-Yves Duclos, 2000. "Statistical Inference for Stochastic Dominance and for the Measurement of Poverty and Inequality," Econometrica, Econometric Society, vol. 68(6), pages 1435-1464, November.
    8. François Bourguignon, 2012. "La mondialisation de l'inégalité," Post-Print halshs-00754908, HAL.
    9. Singh, S K & Maddala, G S, 1976. "A Function for Size Distribution of Incomes," Econometrica, Econometric Society, vol. 44(5), pages 963-970, September.
    10. Martin Biewen & Stephen P. Jenkins, 2006. "Variance Estimation for Generalized Entropy and Atkinson Inequality Indices: the Complex Survey Data Case," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 68(3), pages 371-383, June.
    11. McDonald, James B, 1984. "Some Generalized Functions for the Size Distribution of Income," Econometrica, Econometric Society, vol. 52(3), pages 647-663, May.
    12. Davidson, Russell, 2009. "Reliable inference for the Gini index," Journal of Econometrics, Elsevier, vol. 150(1), pages 30-40, May.
    13. Jenkins, Stephen P, 1996. "Recent Trends in the UK Income Distribution: What Happened and Why?," Oxford Review of Economic Policy, Oxford University Press, vol. 12(1), pages 29-46, Spring.
    14. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika van der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639.
    15. Biewen, Martin, 2002. "Bootstrap inference for inequality, mobility and poverty measurement," Journal of Econometrics, Elsevier, vol. 108(2), pages 317-342, June.
    16. McDonald, James B & Ransom, Michael R, 1979. "Functional Forms, Estimation Techniques and the Distribution of Income," Econometrica, Econometric Society, vol. 47(6), pages 1513-1525, November.
    17. David E. A. Giles, 2004. "Calculating a Standard Error for the Gini Coefficient: Some Further Results," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 66(3), pages 425-433, July.
    18. Matthew Stephens, 2000. "Dealing with label switching in mixture models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(4), pages 795-809.
    19. Duangkamon Chotikapanich & William E Griffiths, 2008. "Estimating Income Distributions Using a Mixture of Gamma Densities," Department of Economics - Working Papers Series 1034, The University of Melbourne.
    20. repec:dau:papers:123456789/6069 is not listed on IDEAS
    21. Marron, J.S. & Schmitz, H.-P., 1992. "Simultaneous Density Estimation of Several Income Distributions," Econometric Theory, Cambridge University Press, vol. 8(04), pages 476-488, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Majda Benzidia & Michel Lubrano, 2016. "A Bayesian Look at American Academic Wages: The Case of Michigan State University," Working Papers halshs-01358882, HAL.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:100:y:2016:i:c:p:830-846. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/csda .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.