Bayesian shrinkage in mixture-of-experts models: identifying robust determinants of class membership
Author
Abstract
Suggested Citation
DOI: 10.1007/s11634-019-00353-y
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.References listed on IDEAS
- Geweke, John, 1989. "Bayesian Inference in Econometric Models Using Monte Carlo Integration," Econometrica, Econometric Society, vol. 57(6), pages 1317-1339, November.
- Villani, Mattias & Kohn, Robert & Nott, David J., 2012. "Generalized smooth finite mixtures," Journal of Econometrics, Elsevier, vol. 171(2), pages 121-133.
- Salvatore Ingrassia & Antonio Punzo & Giorgio Vittadini & Simona Minotti, 2015.
"The Generalized Linear Mixed Cluster-Weighted Model,"
Journal of Classification, Springer;The Classification Society, vol. 32(1), pages 85-113, April.
- Salvatore Ingrassia & Antonio Punzo & Giorgio Vittadini & Simona Minotti, 2015. "Erratum to: The Generalized Linear Mixed Cluster-Weighted Model," Journal of Classification, Springer;The Classification Society, vol. 32(2), pages 327-355, July.
- Nicholas G. Polson & James G. Scott & Jesse Windle, 2013. "Bayesian Inference for Logistic Models Using Pólya--Gamma Latent Variables," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(504), pages 1339-1349, December.
- Sylvia Frühwirth‐Schnatter & Christoph Pamminger & Andrea Weber & Rudolf Winter‐Ebmer, 2012.
"Labor market entry and earnings dynamics: Bayesian inference using mixtures‐of‐experts Markov chain clustering,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(7), pages 1116-1137, November.
- Sylvia Frühwirth-Schnatter & Andrea Weber & Rudolf Winter-Ebmer, 2010. "Labor Market Entry and Earnings Dynamics: Bayesian Inference Using Mixtures-of-Experts Markov Chain Clustering," Economics working papers 2010-11, Department of Economics, Johannes Kepler University Linz, Austria.
- Sylvia Frühwirth-Schnatter & Christoph Pamminger & Andrea Weber & Rudolf Winter-Ebmer, 2010. "Labor Market Entry and Earnings Dynamics: Bayesian Inference Using Mixtures-of-Experts Markov Chain Clustering," NRN working papers 2010-14, The Austrian Center for Labor Economics and the Analysis of the Welfare State, Johannes Kepler University Linz, Austria.
- Rajarshi Guhaniyogi & David B. Dunson, 2015. "Bayesian Compressed Regression," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(512), pages 1500-1514, December.
- Gupta, Mayetri & Ibrahim, Joseph G., 2007. "Variable Selection in Regression Mixture Modeling for the Discovery of Gene Regulatory Networks," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 867-880, September.
- Peter Lenk & Wayne DeSarbo, 2000. "Bayesian inference for finite mixtures of generalized linear models with random effects," Psychometrika, Springer;The Psychometric Society, vol. 65(1), pages 93-119, March.
- Peter E. Rossi & Robert E. McCulloch & Greg M. Allenby, 1996. "The Value of Purchase History Data in Target Marketing," Marketing Science, INFORMS, vol. 15(4), pages 321-340.
- Ingrassia, Salvatore & Minotti, Simona C. & Punzo, Antonio, 2014. "Model-based clustering via linear cluster-weighted models," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 159-182.
- Anderson, Gordon & Farcomeni, Alessio & Pittau, Maria Grazia & Zelli, Roberto, 2016. "A new approach to measuring and studying the characteristics of class membership: Examining poverty, inequality and polarization in urban China," Journal of Econometrics, Elsevier, vol. 191(2), pages 348-359.
- Anirban Bhattacharya & Debdeep Pati & Natesh S. Pillai & David B. Dunson, 2015. "Dirichlet--Laplace Priors for Optimal Shrinkage," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(512), pages 1479-1490, December.
- Florian Huber & Martin Feldkircher, 2019.
"Adaptive Shrinkage in Bayesian Vector Autoregressive Models,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 37(1), pages 27-39, January.
- Florian Huber & Martin Feldkircher, 2016. "Adaptive shrinkage in Bayesian vector autoregressive models," Department of Economics Working Papers wuwp221, Vienna University of Economics and Business, Department of Economics.
- Feldkircher, Martin & Huber, Florian, 2016. "Adaptive Shrinkage in Bayesian Vector Autoregressive Models," Department of Economics Working Paper Series 221, WU Vienna University of Economics and Business.
- Fruhwirth-Schnatter, Sylvia & Kaufmann, Sylvia, 2008.
"Model-Based Clustering of Multiple Time Series,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 78-89, January.
- Kaufmann, Sylvia & Frühwirth-Schnatter, Sylvia, 2004. "Model-based Clustering of Multiple Time Series," CEPR Discussion Papers 4650, C.E.P.R. Discussion Papers.
- Agadjanian, Victor, 2005. "Gender, religious involvement, and HIV/AIDS prevention in Mozambique," Social Science & Medicine, Elsevier, vol. 61(7), pages 1529-1539, October.
- Joyee Ghosh & Amy H. Herring & Anna Maria Siega-Riz, 2011. "Bayesian Variable Selection for Latent Class Models," Biometrics, The International Biometric Society, vol. 67(3), pages 917-925, September.
- Lubrano, Michel & Ndoye, Abdoul Aziz Junior, 2016.
"Income inequality decomposition using a finite mixture of log-normal distributions: A Bayesian approach,"
Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 830-846.
- Michel Lubrano & Abdoul Aziz Junior Ndoye, 2016. "Income inequality decomposition using a finite mixture of log-normal distributions: A Bayesian approach," Post-Print hal-03676126, HAL.
- Michel Lubrano & Abdoul Aziz Junior Ndoye, 2016. "Income inequality decomposition using a finite mixture of log-normal distributions: A Bayesian approach," Post-Print hal-01440303, HAL.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Mirfarah, Elham & Naderi, Mehrdad & Chen, Ding-Geng, 2021. "Mixture of linear experts model for censored data: A novel approach with scale-mixture of normal distributions," Computational Statistics & Data Analysis, Elsevier, vol. 158(C).
- Uddin, Md Nazir & Gaskins, Jeremy T., 2023. "Shared Bayesian variable shrinkage in multinomial logistic regression," Computational Statistics & Data Analysis, Elsevier, vol. 177(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Gregor Zens, 2018. "Bayesian shrinkage in mixture of experts models: Identifying robust determinants of class membership," Papers 1809.04853, arXiv.org, revised Jan 2019.
- Florian Huber & Tam'as Krisztin & Michael Pfarrhofer, 2018. "A Bayesian panel VAR model to analyze the impact of climate change on high-income economies," Papers 1804.01554, arXiv.org, revised Feb 2021.
- Hou, Chenghan, 2024. "Large Bayesian SVARs with linear restrictions," Journal of Econometrics, Elsevier, vol. 244(1).
- Xiaoqiong Fang & Andy W. Chen & Derek S. Young, 2023. "Predictors with measurement error in mixtures of polynomial regressions," Computational Statistics, Springer, vol. 38(1), pages 373-401, March.
- Maruotti, Antonello & Punzo, Antonio, 2017. "Model-based time-varying clustering of multivariate longitudinal data with covariates and outliers," Computational Statistics & Data Analysis, Elsevier, vol. 113(C), pages 475-496.
- Sylvia Frühwirth-Schnatter, 2011. "Panel data analysis: a survey on model-based clustering of time series," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 5(4), pages 251-280, December.
- Ellis Scharfenaker, Markus P.A. Schneider, 2019. "Labor Market Segmentation and the Distribution of Income: New Evidence from Internal Census Bureau Data," Working Paper Series, Department of Economics, University of Utah 2019_08, University of Utah, Department of Economics.
- Chan, Joshua C.C., 2021.
"Minnesota-type adaptive hierarchical priors for large Bayesian VARs,"
International Journal of Forecasting, Elsevier, vol. 37(3), pages 1212-1226.
- Joshua C. C. Chan, 2019. "Minnesota-Type Adaptive Hierarchical Priors for Large Bayesian VARs," CAMA Working Papers 2019-61, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Frühwirth-Schnatter, Sylvia & Pamminger, Christoph & Weber, Andrea & Winter-Ebmer, Rudolf, 2014.
"When Is The Best Time To Give Birth?,"
Economics Series
308, Institute for Advanced Studies.
- Frühwirth-Schnatter, Sylvia & Pamminger, Christoph & Weber, Andrea & Winter-Ebmer, Rudolf, 2014. "When Is the Best Time to Give Birth?," IZA Discussion Papers 8396, Institute of Labor Economics (IZA).
- Sylvia Frühwirth-Schnatter & Christoph Pamminger & Andrea Weber & Rudolf Winter-Ebmer, 2014. "When Is The Best Time To Give Birth?," NRN working papers 2014-09, The Austrian Center for Labor Economics and the Analysis of the Welfare State, Johannes Kepler University Linz, Austria.
- Sylvia Frühwirth-Schnatter & Christoph Pamminger & Andrea Weber & Rudolf Winter-Ebmer, 2014. "When Is The Best Time To Give Birth?," Economics working papers 2014-08, Department of Economics, Johannes Kepler University Linz, Austria.
- Gael M. Martin & David T. Frazier & Ruben Loaiza-Maya & Florian Huber & Gary Koop & John Maheu & Didier Nibbering & Anastasios Panagiotelis, 2023. "Bayesian Forecasting in the 21st Century: A Modern Review," Monash Econometrics and Business Statistics Working Papers 1/23, Monash University, Department of Econometrics and Business Statistics.
- Joshua C. C. Chan, 2024.
"BVARs and stochastic volatility,"
Chapters, in: Michael P. Clements & Ana Beatriz Galvão (ed.), Handbook of Research Methods and Applications in Macroeconomic Forecasting, chapter 3, pages 43-67,
Edward Elgar Publishing.
- Joshua Chan, 2023. "BVARs and Stochastic Volatility," Papers 2310.14438, arXiv.org.
- Hu, Guanyu, 2021. "Spatially varying sparsity in dynamic regression models," Econometrics and Statistics, Elsevier, vol. 17(C), pages 23-34.
- Paolo Berta & Salvatore Ingrassia & Antonio Punzo & Giorgio Vittadini, 2016. "Multilevel cluster-weighted models for the evaluation of hospitals," METRON, Springer;Sapienza Università di Roma, vol. 74(3), pages 275-292, December.
- Jan Prüser & Florian Huber, 2024.
"Nonlinearities in macroeconomic tail risk through the lens of big data quantile regressions,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(2), pages 269-291, March.
- Jan Pruser & Florian Huber, 2023. "Nonlinearities in Macroeconomic Tail Risk through the Lens of Big Data Quantile Regressions," Papers 2301.13604, arXiv.org, revised Sep 2023.
- Michael Pfarrhofer, 2024.
"Forecasts with Bayesian vector autoregressions under real time conditions,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(3), pages 771-801, April.
- Michael Pfarrhofer, 2020. "Forecasts with Bayesian vector autoregressions under real time conditions," Papers 2004.04984, arXiv.org.
- Diani, Cecilia & Galimberti, Giuliano & Soffritti, Gabriele, 2022. "Multivariate cluster-weighted models based on seemingly unrelated linear regression," Computational Statistics & Data Analysis, Elsevier, vol. 171(C).
- Lee, Kuo-Jung & Chen, Ray-Bing & Wu, Ying Nian, 2016. "Bayesian variable selection for finite mixture model of linear regressions," Computational Statistics & Data Analysis, Elsevier, vol. 95(C), pages 1-16.
- Lynd Bacon & Peter Lenk, 2012. "Augmenting discrete-choice data to identify common preference scales for inter-subject analyses," Quantitative Marketing and Economics (QME), Springer, vol. 10(4), pages 453-474, December.
- Salvatore Ingrassia & Antonio Punzo, 2020. "Cluster Validation for Mixtures of Regressions via the Total Sum of Squares Decomposition," Journal of Classification, Springer;The Classification Society, vol. 37(2), pages 526-547, July.
- Parfait Munezero, 2022. "Efficient particle smoothing for Bayesian inference in dynamic survival models," Computational Statistics, Springer, vol. 37(2), pages 975-994, April.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:advdac:v:13:y:2019:i:4:d:10.1007_s11634-019-00353-y. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.