IDEAS home Printed from https://ideas.repec.org/a/spr/advdac/v13y2019i4d10.1007_s11634-019-00353-y.html
   My bibliography  Save this article

Bayesian shrinkage in mixture-of-experts models: identifying robust determinants of class membership

Author

Listed:
  • Gregor Zens

    (Vienna University of Economics and Business)

Abstract

A method for implicit variable selection in mixture-of-experts frameworks is proposed. We introduce a prior structure where information is taken from a set of independent covariates. Robust class membership predictors are identified using a normal gamma prior. The resulting model setup is used in a finite mixture of Bernoulli distributions to find homogenous clusters of women in Mozambique based on their information sources on HIV. Fully Bayesian inference is carried out via the implementation of a Gibbs sampler.

Suggested Citation

  • Gregor Zens, 2019. "Bayesian shrinkage in mixture-of-experts models: identifying robust determinants of class membership," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(4), pages 1019-1051, December.
  • Handle: RePEc:spr:advdac:v:13:y:2019:i:4:d:10.1007_s11634-019-00353-y
    DOI: 10.1007/s11634-019-00353-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11634-019-00353-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11634-019-00353-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Geweke, John, 1989. "Bayesian Inference in Econometric Models Using Monte Carlo Integration," Econometrica, Econometric Society, vol. 57(6), pages 1317-1339, November.
    2. Villani, Mattias & Kohn, Robert & Nott, David J., 2012. "Generalized smooth finite mixtures," Journal of Econometrics, Elsevier, vol. 171(2), pages 121-133.
    3. Salvatore Ingrassia & Antonio Punzo & Giorgio Vittadini & Simona Minotti, 2015. "Erratum to: The Generalized Linear Mixed Cluster-Weighted Model," Journal of Classification, Springer;The Classification Society, vol. 32(2), pages 327-355, July.
    4. Nicholas G. Polson & James G. Scott & Jesse Windle, 2013. "Bayesian Inference for Logistic Models Using Pólya--Gamma Latent Variables," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(504), pages 1339-1349, December.
    5. Sylvia Frühwirth‐Schnatter & Christoph Pamminger & Andrea Weber & Rudolf Winter‐Ebmer, 2012. "Labor market entry and earnings dynamics: Bayesian inference using mixtures‐of‐experts Markov chain clustering," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(7), pages 1116-1137, November.
    6. Rajarshi Guhaniyogi & David B. Dunson, 2015. "Bayesian Compressed Regression," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(512), pages 1500-1514, December.
    7. Gupta, Mayetri & Ibrahim, Joseph G., 2007. "Variable Selection in Regression Mixture Modeling for the Discovery of Gene Regulatory Networks," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 867-880, September.
    8. Peter Lenk & Wayne DeSarbo, 2000. "Bayesian inference for finite mixtures of generalized linear models with random effects," Psychometrika, Springer;The Psychometric Society, vol. 65(1), pages 93-119, March.
    9. Peter E. Rossi & Robert E. McCulloch & Greg M. Allenby, 1996. "The Value of Purchase History Data in Target Marketing," Marketing Science, INFORMS, vol. 15(4), pages 321-340.
    10. Ingrassia, Salvatore & Minotti, Simona C. & Punzo, Antonio, 2014. "Model-based clustering via linear cluster-weighted models," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 159-182.
    11. Salvatore Ingrassia & Antonio Punzo & Giorgio Vittadini & Simona Minotti, 2015. "The Generalized Linear Mixed Cluster-Weighted Model," Journal of Classification, Springer;The Classification Society, vol. 32(1), pages 85-113, April.
    12. Anderson, Gordon & Farcomeni, Alessio & Pittau, Maria Grazia & Zelli, Roberto, 2016. "A new approach to measuring and studying the characteristics of class membership: Examining poverty, inequality and polarization in urban China," Journal of Econometrics, Elsevier, vol. 191(2), pages 348-359.
    13. Anirban Bhattacharya & Debdeep Pati & Natesh S. Pillai & David B. Dunson, 2015. "Dirichlet--Laplace Priors for Optimal Shrinkage," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(512), pages 1479-1490, December.
    14. Florian Huber & Martin Feldkircher, 2019. "Adaptive Shrinkage in Bayesian Vector Autoregressive Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 37(1), pages 27-39, January.
    15. Fruhwirth-Schnatter, Sylvia & Kaufmann, Sylvia, 2008. "Model-Based Clustering of Multiple Time Series," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 78-89, January.
    16. Agadjanian, Victor, 2005. "Gender, religious involvement, and HIV/AIDS prevention in Mozambique," Social Science & Medicine, Elsevier, vol. 61(7), pages 1529-1539, October.
    17. Joyee Ghosh & Amy H. Herring & Anna Maria Siega-Riz, 2011. "Bayesian Variable Selection for Latent Class Models," Biometrics, The International Biometric Society, vol. 67(3), pages 917-925, September.
    18. Lubrano, Michel & Ndoye, Abdoul Aziz Junior, 2016. "Income inequality decomposition using a finite mixture of log-normal distributions: A Bayesian approach," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 830-846.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Uddin, Md Nazir & Gaskins, Jeremy T., 2023. "Shared Bayesian variable shrinkage in multinomial logistic regression," Computational Statistics & Data Analysis, Elsevier, vol. 177(C).
    2. Mirfarah, Elham & Naderi, Mehrdad & Chen, Ding-Geng, 2021. "Mixture of linear experts model for censored data: A novel approach with scale-mixture of normal distributions," Computational Statistics & Data Analysis, Elsevier, vol. 158(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gregor Zens, 2018. "Bayesian shrinkage in mixture of experts models: Identifying robust determinants of class membership," Papers 1809.04853, arXiv.org, revised Jan 2019.
    2. Florian Huber & Tam'as Krisztin & Michael Pfarrhofer, 2018. "A Bayesian panel VAR model to analyze the impact of climate change on high-income economies," Papers 1804.01554, arXiv.org, revised Feb 2021.
    3. Xiaoqiong Fang & Andy W. Chen & Derek S. Young, 2023. "Predictors with measurement error in mixtures of polynomial regressions," Computational Statistics, Springer, vol. 38(1), pages 373-401, March.
    4. Maruotti, Antonello & Punzo, Antonio, 2017. "Model-based time-varying clustering of multivariate longitudinal data with covariates and outliers," Computational Statistics & Data Analysis, Elsevier, vol. 113(C), pages 475-496.
    5. Diani, Cecilia & Galimberti, Giuliano & Soffritti, Gabriele, 2022. "Multivariate cluster-weighted models based on seemingly unrelated linear regression," Computational Statistics & Data Analysis, Elsevier, vol. 171(C).
    6. Salvatore Ingrassia & Antonio Punzo, 2020. "Cluster Validation for Mixtures of Regressions via the Total Sum of Squares Decomposition," Journal of Classification, Springer;The Classification Society, vol. 37(2), pages 526-547, July.
    7. Salvatore D. Tomarchio & Paul D. McNicholas & Antonio Punzo, 2021. "Matrix Normal Cluster-Weighted Models," Journal of Classification, Springer;The Classification Society, vol. 38(3), pages 556-575, October.
    8. Hu, Hao & Yao, Weixin & Wu, Yichao, 2017. "The robust EM-type algorithms for log-concave mixtures of regression models," Computational Statistics & Data Analysis, Elsevier, vol. 111(C), pages 14-26.
    9. Počuča, Nikola & Jevtić, Petar & McNicholas, Paul D. & Miljkovic, Tatjana, 2020. "Modeling frequency and severity of claims with the zero-inflated generalized cluster-weighted models," Insurance: Mathematics and Economics, Elsevier, vol. 94(C), pages 79-93.
    10. Gabriele Soffritti, 2021. "Estimating the Covariance Matrix of the Maximum Likelihood Estimator Under Linear Cluster-Weighted Models," Journal of Classification, Springer;The Classification Society, vol. 38(3), pages 594-625, October.
    11. Yang, Yu-Chen & Lin, Tsung-I & Castro, Luis M. & Wang, Wan-Lun, 2020. "Extending finite mixtures of t linear mixed-effects models with concomitant covariates," Computational Statistics & Data Analysis, Elsevier, vol. 148(C).
    12. Michael P. B. Gallaugher & Salvatore D. Tomarchio & Paul D. McNicholas & Antonio Punzo, 2022. "Multivariate cluster weighted models using skewed distributions," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(1), pages 93-124, March.
    13. Paul D. McNicholas, 2016. "Model-Based Clustering," Journal of Classification, Springer;The Classification Society, vol. 33(3), pages 331-373, October.
    14. Utkarsh J. Dang & Antonio Punzo & Paul D. McNicholas & Salvatore Ingrassia & Ryan P. Browne, 2017. "Multivariate Response and Parsimony for Gaussian Cluster-Weighted Models," Journal of Classification, Springer;The Classification Society, vol. 34(1), pages 4-34, April.
    15. Antonio Punzo & Paul. D. McNicholas, 2017. "Robust Clustering in Regression Analysis via the Contaminated Gaussian Cluster-Weighted Model," Journal of Classification, Springer;The Classification Society, vol. 34(2), pages 249-293, July.
    16. Angelo Mazza & Antonio Punzo, 2020. "Mixtures of multivariate contaminated normal regression models," Statistical Papers, Springer, vol. 61(2), pages 787-822, April.
    17. Sanjeena Subedi & Antonio Punzo & Salvatore Ingrassia & Paul McNicholas, 2015. "Cluster-weighted $$t$$ t -factor analyzers for robust model-based clustering and dimension reduction," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(4), pages 623-649, November.
    18. Sylvia Frühwirth-Schnatter, 2011. "Panel data analysis: a survey on model-based clustering of time series," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 5(4), pages 251-280, December.
    19. Naderi, Mehrdad & Mirfarah, Elham & Wang, Wan-Lun & Lin, Tsung-I, 2023. "Robust mixture regression modeling based on the normal mean-variance mixture distributions," Computational Statistics & Data Analysis, Elsevier, vol. 180(C).
    20. Sangkon Oh & Byungtae Seo, 2023. "Merging Components in Linear Gaussian Cluster-Weighted Models," Journal of Classification, Springer;The Classification Society, vol. 40(1), pages 25-51, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:advdac:v:13:y:2019:i:4:d:10.1007_s11634-019-00353-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.