IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v38y2023i1d10.1007_s00180-022-01232-5.html
   My bibliography  Save this article

Predictors with measurement error in mixtures of polynomial regressions

Author

Listed:
  • Xiaoqiong Fang

    (Corporate & Investment Bank, J.P. Morgan)

  • Andy W. Chen

    (School of Business, Government, and Economics, Seattle Pacific University)

  • Derek S. Young

    (University of Kentucky)

Abstract

There has been a substantial body of research on mixtures-of-regressions models that has developed over the past 20 years. While much of the recent literature has focused on flexible mixtures-of-regressions models, there is still considerable utility for imposing structure on the mixture components through fully parametric models. One feature of the data that is scantly addressed in mixtures of regressions is the presence of measurement error in the predictors. The limited existing research on this topic concerns the case where classical measurement error is added to the classic mixtures-of-linear-regressions model. In this paper, we consider the setting of mixtures of polynomial regressions where the predictors are subject to classical measurement error. Moreover, each component is allowed to have a different degree for the polynomial structure. We utilize a generalized expectation-maximization algorithm for performing maximum likelihood estimation. For estimating standard errors, we extend a semiparametric bootstrap routine that has been employed for mixtures of linear regressions without measurement error in the predictors. Numeric work, for practical reasons identified, is limited to estimating two-component models. We consider a likelihood ratio test for determining if there is a higher-degree polynomial term in one of the components. Model selection criteria are also highlighted as a way for determining an appropriate model. A simulation study and an application to the classic nitric oxide emissions data are provided.

Suggested Citation

  • Xiaoqiong Fang & Andy W. Chen & Derek S. Young, 2023. "Predictors with measurement error in mixtures of polynomial regressions," Computational Statistics, Springer, vol. 38(1), pages 373-401, March.
  • Handle: RePEc:spr:compst:v:38:y:2023:i:1:d:10.1007_s00180-022-01232-5
    DOI: 10.1007/s00180-022-01232-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-022-01232-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-022-01232-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. T. Rolf Turner, 2000. "Estimating the propagation rate of a viral infection of potato plants via mixtures of regressions," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 49(3), pages 371-384.
    2. Elizabeth A. Sugar & Ching-Yun Wang & Ross L. Prentice, 2007. "Logistic Regression with Exposure Biomarkers and Flexible Measurement Error," Biometrics, The International Biometric Society, vol. 63(1), pages 143-151, March.
    3. Matthew Stephens, 2000. "Dealing with label switching in mixture models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(4), pages 795-809.
    4. David Hunter & Derek Young, 2012. "Semiparametric mixtures of regressions," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 24(1), pages 19-38.
    5. Pierre Vandekerkhove, 2013. "Estimation of a semiparametric mixture of regressions model," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 25(1), pages 181-208, March.
    6. Peter Lenk & Wayne DeSarbo, 2000. "Bayesian inference for finite mixtures of generalized linear models with random effects," Psychometrika, Springer;The Psychometric Society, vol. 65(1), pages 93-119, March.
    7. Ingrassia, Salvatore & Minotti, Simona C. & Punzo, Antonio, 2014. "Model-based clustering via linear cluster-weighted models," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 159-182.
    8. Vilca, Filidor & Balakrishnan, N. & Zeller, Camila Borelli, 2014. "The bivariate Sinh-Elliptical distribution with applications to Birnbaum–Saunders distribution and associated regression and measurement error models," Computational Statistics & Data Analysis, Elsevier, vol. 80(C), pages 1-16.
    9. Salvatore Ingrassia & Simona Minotti & Giorgio Vittadini, 2012. "Local Statistical Modeling via a Cluster-Weighted Approach with Elliptical Distributions," Journal of Classification, Springer;The Classification Society, vol. 29(3), pages 363-401, October.
    10. Rohit Kumar Patra & Bodhisattva Sen, 2016. "Estimation of a two-component mixture model with applications to multiple testing," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(4), pages 869-893, September.
    11. G. J. McLachlan, 1987. "On Bootstrapping the Likelihood Ratio Test Statistic for the Number of Components in a Normal Mixture," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 36(3), pages 318-324, November.
    12. De Veaux, Richard D., 1989. "Mixtures of linear regressions," Computational Statistics & Data Analysis, Elsevier, vol. 8(3), pages 227-245, November.
    13. Salvatore Ingrassia & Antonio Punzo & Giorgio Vittadini & Simona Minotti, 2015. "Erratum to: The Generalized Linear Mixed Cluster-Weighted Model," Journal of Classification, Springer;The Classification Society, vol. 32(2), pages 327-355, July.
    14. Hamparsum Bozdogan, 1987. "Model selection and Akaike's Information Criterion (AIC): The general theory and its analytical extensions," Psychometrika, Springer;The Psychometric Society, vol. 52(3), pages 345-370, September.
    15. Weixin Yao & Weixing Song, 2015. "Mixtures of Linear Regression with Measurement Errors," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 44(8), pages 1602-1614, April.
    16. Sylvia Richardson & Laurent Leblond & Isabelle Jaussent & Peter J. Green, 2002. "Mixture models in measurement error problems, with reference to epidemiological studies," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 165(3), pages 549-566, October.
    17. Matthew Blackwell & James Honaker & Gary King, 2017. "A Unified Approach to Measurement Error and Missing Data: Overview and Applications," Sociological Methods & Research, , vol. 46(3), pages 303-341, August.
    18. Salvatore Ingrassia & Antonio Punzo & Giorgio Vittadini & Simona Minotti, 2015. "The Generalized Linear Mixed Cluster-Weighted Model," Journal of Classification, Springer;The Classification Society, vol. 32(1), pages 85-113, April.
    19. Michel Wedel & Wayne DeSarbo, 1995. "A mixture likelihood approach for generalized linear models," Journal of Classification, Springer;The Classification Society, vol. 12(1), pages 21-55, March.
    20. Raymond J. Carroll & Kathryn Roeder & Larry Wasserman, 1999. "Flexible Parametric Measurement Error Models," Biometrics, The International Biometric Society, vol. 55(1), pages 44-54, March.
    21. Clifford M. Hurvich & Jeffrey S. Simonoff & Chih‐Ling Tsai, 1998. "Smoothing parameter selection in nonparametric regression using an improved Akaike information criterion," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 60(2), pages 271-293.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Naderi, Mehrdad & Mirfarah, Elham & Wang, Wan-Lun & Lin, Tsung-I, 2023. "Robust mixture regression modeling based on the normal mean-variance mixture distributions," Computational Statistics & Data Analysis, Elsevier, vol. 180(C).
    2. Salvatore Ingrassia & Antonio Punzo, 2020. "Cluster Validation for Mixtures of Regressions via the Total Sum of Squares Decomposition," Journal of Classification, Springer;The Classification Society, vol. 37(2), pages 526-547, July.
    3. Hu, Hao & Yao, Weixin & Wu, Yichao, 2017. "The robust EM-type algorithms for log-concave mixtures of regression models," Computational Statistics & Data Analysis, Elsevier, vol. 111(C), pages 14-26.
    4. Antonio Punzo & Paul. D. McNicholas, 2017. "Robust Clustering in Regression Analysis via the Contaminated Gaussian Cluster-Weighted Model," Journal of Classification, Springer;The Classification Society, vol. 34(2), pages 249-293, July.
    5. Sanjeena Subedi & Antonio Punzo & Salvatore Ingrassia & Paul McNicholas, 2015. "Cluster-weighted $$t$$ t -factor analyzers for robust model-based clustering and dimension reduction," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(4), pages 623-649, November.
    6. Diani, Cecilia & Galimberti, Giuliano & Soffritti, Gabriele, 2022. "Multivariate cluster-weighted models based on seemingly unrelated linear regression," Computational Statistics & Data Analysis, Elsevier, vol. 171(C).
    7. Salvatore D. Tomarchio & Paul D. McNicholas & Antonio Punzo, 2021. "Matrix Normal Cluster-Weighted Models," Journal of Classification, Springer;The Classification Society, vol. 38(3), pages 556-575, October.
    8. Počuča, Nikola & Jevtić, Petar & McNicholas, Paul D. & Miljkovic, Tatjana, 2020. "Modeling frequency and severity of claims with the zero-inflated generalized cluster-weighted models," Insurance: Mathematics and Economics, Elsevier, vol. 94(C), pages 79-93.
    9. Gabriele Soffritti, 2021. "Estimating the Covariance Matrix of the Maximum Likelihood Estimator Under Linear Cluster-Weighted Models," Journal of Classification, Springer;The Classification Society, vol. 38(3), pages 594-625, October.
    10. Yang, Yu-Chen & Lin, Tsung-I & Castro, Luis M. & Wang, Wan-Lun, 2020. "Extending finite mixtures of t linear mixed-effects models with concomitant covariates," Computational Statistics & Data Analysis, Elsevier, vol. 148(C).
    11. Michael P. B. Gallaugher & Salvatore D. Tomarchio & Paul D. McNicholas & Antonio Punzo, 2022. "Multivariate cluster weighted models using skewed distributions," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(1), pages 93-124, March.
    12. Paul D. McNicholas, 2016. "Model-Based Clustering," Journal of Classification, Springer;The Classification Society, vol. 33(3), pages 331-373, October.
    13. Utkarsh J. Dang & Antonio Punzo & Paul D. McNicholas & Salvatore Ingrassia & Ryan P. Browne, 2017. "Multivariate Response and Parsimony for Gaussian Cluster-Weighted Models," Journal of Classification, Springer;The Classification Society, vol. 34(1), pages 4-34, April.
    14. Angelo Mazza & Antonio Punzo, 2020. "Mixtures of multivariate contaminated normal regression models," Statistical Papers, Springer, vol. 61(2), pages 787-822, April.
    15. Gregor Zens, 2019. "Bayesian shrinkage in mixture-of-experts models: identifying robust determinants of class membership," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(4), pages 1019-1051, December.
    16. Nguyen, Hien D. & McLachlan, Geoffrey J., 2016. "Laplace mixture of linear experts," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 177-191.
    17. Salvatore Ingrassia & Antonio Punzo & Giorgio Vittadini & Simona Minotti, 2015. "The Generalized Linear Mixed Cluster-Weighted Model," Journal of Classification, Springer;The Classification Society, vol. 32(1), pages 85-113, April.
    18. Sangkon Oh & Byungtae Seo, 2023. "Merging Components in Linear Gaussian Cluster-Weighted Models," Journal of Classification, Springer;The Classification Society, vol. 40(1), pages 25-51, April.
    19. Faicel Chamroukhi, 2016. "Piecewise Regression Mixture for Simultaneous Functional Data Clustering and Optimal Segmentation," Journal of Classification, Springer;The Classification Society, vol. 33(3), pages 374-411, October.
    20. Wu, Qiang & Yao, Weixin, 2016. "Mixtures of quantile regressions," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 162-176.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:38:y:2023:i:1:d:10.1007_s00180-022-01232-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.