IDEAS home Printed from https://ideas.repec.org/a/gam/jecnmx/v6y2018i2p22-d142189.html
   My bibliography  Save this article

Parametric Inference for Index Functionals

Author

Listed:
  • Stéphane Guerrier

    (Department of Statistics & Institute for CyberScience, Eberly College of Science, Pennsylvania State University, University Park, 16802 PA, USA)

  • Samuel Orso

    (Research Center for Statistics, Geneva School of Economics and Management, University of Geneva, 1202 Geneva, Switzerland)

  • Maria-Pia Victoria-Feser

    (Research Center for Statistics, Geneva School of Economics and Management, University of Geneva, 1202 Geneva, Switzerland)

Abstract

In this paper, we study the finite sample accuracy of confidence intervals for index functional built via parametric bootstrap, in the case of inequality indices. To estimate the parameters of the assumed parametric data generating distribution, we propose a Generalized Method of Moment estimator that targets the quantity of interest, namely the considered inequality index. Its primary advantage is that the scale parameter does not need to be estimated to perform parametric bootstrap, since inequality measures are scale invariant. The very good finite sample coverages that are found in a simulation study suggest that this feature provides an advantage over the parametric bootstrap using the maximum likelihood estimator. We also find that overall, a parametric bootstrap provides more accurate inference than its non or semi-parametric counterparts, especially for heavy tailed income distributions.

Suggested Citation

  • Stéphane Guerrier & Samuel Orso & Maria-Pia Victoria-Feser, 2018. "Parametric Inference for Index Functionals," Econometrics, MDPI, vol. 6(2), pages 1-11, April.
  • Handle: RePEc:gam:jecnmx:v:6:y:2018:i:2:p:22-:d:142189
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2225-1146/6/2/22/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2225-1146/6/2/22/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Danielsson, J. & de Haan, L. & Peng, L. & de Vries, C. G., 2001. "Using a Bootstrap Method to Choose the Sample Fraction in Tail Index Estimation," Journal of Multivariate Analysis, Elsevier, vol. 76(2), pages 226-248, February.
    2. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-1054, July.
    3. Flachaire, Emmanuel & Nunez, Olivier, 2007. "Estimation of the income distribution and detection of subpopulations: An explanatory model," Computational Statistics & Data Analysis, Elsevier, vol. 51(7), pages 3368-3380, April.
    4. Davidson, Russell & Flachaire, Emmanuel, 2007. "Asymptotic and bootstrap inference for inequality and poverty measures," Journal of Econometrics, Elsevier, vol. 141(1), pages 141-166, November.
    5. Gallant, A. Ronald & Tauchen, George, 1996. "Which Moments to Match?," Econometric Theory, Cambridge University Press, vol. 12(4), pages 657-681, October.
    6. Russell Davidson, 2010. "Innis Lecture: Inference on income distributions," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 43(4), pages 1122-1148, November.
    7. Cowell, Frank A. & Flachaire, Emmanuel, 2007. "Income distribution and inequality measurement: The problem of extreme values," Journal of Econometrics, Elsevier, vol. 141(2), pages 1044-1072, December.
    8. Frank A. Cowell, 2008. "Income Distribution and Inequality," Chapters, in: John B. Davis & Wilfred Dolfsma (ed.), The Elgar Companion to Social Economics, chapter 13, Edward Elgar Publishing.
    9. Knut Heggland & Arnoldo Frigessi, 2004. "Estimating functions in indirect inference," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(2), pages 447-462, May.
    10. Armelle Guillou & Peter Hall, 2001. "A diagnostic for selecting the threshold in extreme value analysis," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(2), pages 293-305.
    11. Christian Schluter, 2012. "On the problem of inference for inequality measures for heavy‐tailed distributions," Econometrics Journal, Royal Economic Society, vol. 15(1), pages 125-153, February.
    12. McFadden, Daniel, 1989. "A Method of Simulated Moments for Estimation of Discrete Response Models without Numerical Integration," Econometrica, Econometric Society, vol. 57(5), pages 995-1026, September.
    13. Stelios Arvanitis & Antonis Demos, 2015. "A class of indirect inference estimators: higher‐order asymptotics and approximate bias correction," Econometrics Journal, Royal Economic Society, vol. 18(2), pages 200-241, June.
    14. Davidson, Russell, 2009. "Reliable inference for the Gini index," Journal of Econometrics, Elsevier, vol. 150(1), pages 30-40, May.
    15. Mills, Jeffrey A & Zandvakili, Sourushe, 1997. "Statistical Inference via Bootstrapping for Measures of Inequality," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 12(2), pages 133-150, March-Apr.
    16. Peter C. B. Phillips, 2012. "Folklore Theorems, Implicit Maps, and Indirect Inference," Econometrica, Econometric Society, vol. 80(1), pages 425-454, January.
    17. Biewen, Martin, 2002. "Bootstrap inference for inequality, mobility and poverty measurement," Journal of Econometrics, Elsevier, vol. 108(2), pages 317-342, June.
    18. James B. McDonald, 2008. "Some Generalized Functions for the Size Distribution of Income," Economic Studies in Inequality, Social Exclusion, and Well-Being, in: Duangkamon Chotikapanich (ed.), Modeling Income Distributions and Lorenz Curves, chapter 3, pages 37-55, Springer.
    19. Frank A. Cowell & Emmanuel Flachaire, 2014. "Statistical Methods for Distributional Analysis," Working Papers halshs-01115996, HAL.
    20. Frank A. Cowell & Maria-Pia Victoria-Feser, 2002. "Welfare Rankings in the Presence of Contaminated Data," Econometrica, Econometric Society, vol. 70(3), pages 1221-1233, May.
    21. McDonald, James B. & Xu, Yexiao J., 1995. "A generalization of the beta distribution with applications," Journal of Econometrics, Elsevier, vol. 69(2), pages 427-428, October.
    22. Singh, S K & Maddala, G S, 1976. "A Function for Size Distribution of Incomes," Econometrica, Econometric Society, vol. 44(5), pages 963-970, September.
    23. Frank Cowell & Maria-Pia Victoria-Feser, 2003. "Distribution-Free Inference for Welfare Indices under Complete and Incomplete Information," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 1(3), pages 191-219, December.
    24. Russell Davidson, 2012. "Statistical inference in the presence of heavy tails," Econometrics Journal, Royal Economic Society, vol. 15(1), pages 31-53, February.
    25. Cowell, Frank A & Victoria-Feser, Maria-Pia, 1996. "Robustness Properties of Inequality Measures," Econometrica, Econometric Society, vol. 64(1), pages 77-101, January.
    26. Schluter, Christian & van Garderen, Kees Jan, 2009. "Edgeworth expansions and normalizing transforms for inequality measures," Journal of Econometrics, Elsevier, vol. 150(1), pages 16-29, May.
    27. Ripsy Bandourian & Robert Turley & James McDonald, 2002. "A Comparison of Parametric Models of Income Distribution across Countries and over Time," LIS Working papers 305, LIS Cross-National Data Center in Luxembourg.
    28. Russell Davidson, 2010. "Inference on Income Distributions," Working Papers halshs-00541164, HAL.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Frank A. Cowell & Emmanuel Flachaire, 2014. "Statistical Methods for Distributional Analysis," Working Papers halshs-01115996, HAL.
    2. Frank A. Cowell & Philippe Kerm, 2015. "Wealth Inequality: A Survey," Journal of Economic Surveys, Wiley Blackwell, vol. 29(4), pages 671-710, September.
    3. Vladimir Hlasny, 2021. "Parametric representation of the top of income distributions: Options, historical evidence, and model selection," Journal of Economic Surveys, Wiley Blackwell, vol. 35(4), pages 1217-1256, September.
    4. Jean-Marie Dufour & Emmanuel Flachaire & Lynda Khalaf, 2019. "Permutation Tests for Comparing Inequality Measures," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 37(3), pages 457-470, July.
    5. Dorothée Boccanfuso & Bernard Decaluwé & Luc Savard, 2008. "Poverty, income distribution and CGE micro-simulation modeling: Does the functional form of distribution matter?," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 6(2), pages 149-184, June.
    6. Brzezinski, Michal, 2013. "Asymptotic and bootstrap inference for top income shares," Economics Letters, Elsevier, vol. 120(1), pages 10-13.
    7. Vladimir Hlasny & Paolo Verme, 2022. "The Impact of Top Incomes Biases on the Measurement of Inequality in the United States," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 84(4), pages 749-788, August.
    8. Frank Cowell & Emmanuel Flachaire & Sanghamitra Bandyopadhyay, 2013. "Reference distributions and inequality measurement," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 11(4), pages 421-437, December.
    9. Vladimir Hlasny & Paolo Verme, 2018. "Top Incomes and Inequality Measurement: A Comparative Analysis of Correction Methods Using the EU SILC Data," Econometrics, MDPI, vol. 6(2), pages 1-21, June.
    10. Frank Cowell & Emmanuel Flachaire, 2021. "Inequality Measurement: Methods and Data," Post-Print hal-03589066, HAL.
    11. Arthur Charpentier & Emmanuel Flachaire, 2022. "Pareto models for top incomes and wealth," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 20(1), pages 1-25, March.
    12. Lubrano, Michel & Ndoye, Abdoul Aziz Junior, 2016. "Income inequality decomposition using a finite mixture of log-normal distributions: A Bayesian approach," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 830-846.
    13. Jean-Marie Dufour & Emmanuel Flachaire & Lynda Khalaf & Abdallah Zalghout, 2020. "Identification-Robust Inequality Analysis," Cahiers de recherche 03-2020, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    14. Beat Hulliger & Tobias Schoch, 2014. "Robust, distribution-free inference for income share ratios under complex sampling," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 98(1), pages 63-85, January.
    15. Silvia De Nicol`o & Maria Rosaria Ferrante & Silvia Pacei, 2021. "Mind the Income Gap: Bias Correction of Inequality Estimators in Small-Sized Samples," Papers 2107.08950, arXiv.org, revised May 2023.
    16. Michał Brzeziński, 2013. "Parametric Modelling of Income Distribution in Central and Eastern Europe," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 5(3), pages 207-230, September.
    17. Monique Graf & Desislava Nedyalkova, 2014. "Modeling of Income and Indicators of Poverty and Social Exclusion Using the Generalized Beta Distribution of the Second Kind," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 60(4), pages 821-842, December.
    18. Nartikoev, Alan & Peresetsky, Anatoly, 2019. "Modeling the dynamics of income distribution in Russia," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 54, pages 105-125.
    19. Cowell, Frank A. & Flachaire, Emmanuel, 2007. "Income distribution and inequality measurement: The problem of extreme values," Journal of Econometrics, Elsevier, vol. 141(2), pages 1044-1072, December.
    20. Vladimir Hlasny & Paolo Verme, 2018. "Top Incomes and the Measurement of Inequality in Egypt," The World Bank Economic Review, World Bank, vol. 32(2), pages 428-455.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jecnmx:v:6:y:2018:i:2:p:22-:d:142189. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.