IDEAS home Printed from https://ideas.repec.org/a/bla/obuest/v84y2022i4p749-788.html
   My bibliography  Save this article

The Impact of Top Incomes Biases on the Measurement of Inequality in the United States

Author

Listed:
  • Vladimir Hlasny
  • Paolo Verme

Abstract

The paper assesses how top incomes biases affect the estimation of income inequality in the United States using the Current Population Survey (the March Annual Social and Economic Supplement) and two alternative correction methods – a stochastic approach based on reweighting and a semi‐parametric approach based on replacing observations. Consistently with previous studies, both methods and their joint application show that income inequality in the United States between 1979 and 2014 has been consistently underestimated by several percentage points. The level of underestimation is positively and significantly associated with mean income, non‐response rates and the initial level of inequality. Reweighting is found to address top incomes biases – specifically those related to unit and item non‐response – consistently and more effectively than replacing, possibly because widely used parametric distributions do not represent US top incomes accurately.

Suggested Citation

  • Vladimir Hlasny & Paolo Verme, 2022. "The Impact of Top Incomes Biases on the Measurement of Inequality in the United States," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 84(4), pages 749-788, August.
  • Handle: RePEc:bla:obuest:v:84:y:2022:i:4:p:749-788
    DOI: 10.1111/obes.12472
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/obes.12472
    Download Restriction: no

    File URL: https://libkey.io/10.1111/obes.12472?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Vladimir Hlasny, 2020. "Nonresponse Bias in Inequality Measurement: Cross‐Country Analysis Using Luxembourg Income Study Surveys," Social Science Quarterly, Southwestern Social Science Association, vol. 101(2), pages 712-731, March.
    2. Vladimir Hlasny & Paolo Verme, 2018. "Top Incomes and the Measurement of Inequality in Egypt," The World Bank Economic Review, World Bank Group, vol. 32(2), pages 428-455.
    3. Davidson, Russell & Flachaire, Emmanuel, 2007. "Asymptotic and bootstrap inference for inequality and poverty measures," Journal of Econometrics, Elsevier, vol. 141(1), pages 141-166, November.
    4. François Bourguignon & Christian Morrisson, 2002. "Inequality Among World Citizens: 1820-1992," American Economic Review, American Economic Association, vol. 92(4), pages 727-744, September.
    5. Richard Burkhauser & Shuaizhang Feng & Stephen Jenkins & Jeff Larrimore, 2011. "Estimating trends in US income inequality using the Current Population Survey: the importance of controlling for censoring," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 9(3), pages 393-415, September.
    6. Surjit Bhalla, 2002. "Imagine There's No Country: Poverty, Inequality, and Growth in the Era of Globalization," Peterson Institute Press: All Books, Peterson Institute for International Economics, number 348, July.
    7. Frank A. Cowell, 2008. "Income Distribution and Inequality," Chapters, in: John B. Davis & Wilfred Dolfsma (ed.), The Elgar Companion to Social Economics, chapter 13, Edward Elgar Publishing.
    8. A. B. Atkinson, 2017. "Pareto and the Upper Tail of the Income Distribution in the UK: 1799 to the Present," Economica, London School of Economics and Political Science, vol. 84(334), pages 129-156, April.
    9. Thomas Blanchet & Juliette Fournier & Thomas Piketty, 2022. "Generalized Pareto Curves: Theory and Applications," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 68(1), pages 263-288, March.
    10. Richard Burkhauser & Shuaizhang Feng & Stephen Jenkins & Jeff Larrimore, 2009. "Recent Trends in Top Income Shares in the USA: Reconciling Estimates from March CPS and IRS Tax Return Data," Working Papers 09-26, Center for Economic Studies, U.S. Census Bureau.
    11. Angus Deaton, 2005. "Measuring Poverty in a Growing World (or Measuring Growth in a Poor World)," The Review of Economics and Statistics, MIT Press, vol. 87(1), pages 1-19, February.
    12. Bruce D. Meyer & Wallace K. C. Mok & James X. Sullivan, 2009. "The Under-Reporting of Transfers in Household Surveys: Its Nature and Consequences," Working Papers 0903, Harris School of Public Policy Studies, University of Chicago.
    13. Xavier Sala-i-Martin, 2002. "The world distribution of income (estimated from individual country distributions)," Economics Working Papers 615, Department of Economics and Business, Universitat Pompeu Fabra, revised May 2002.
    14. Stephen P. Jenkins & Richard V. Burkhauser & Shuaizhang Feng & Jeff Larrimore, 2011. "Measuring inequality using censored data: a multiple‐imputation approach to estimation and inference," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 174(1), pages 63-81, January.
    15. Cowell, Frank A. & Flachaire, Emmanuel, 2007. "Income distribution and inequality measurement: The problem of extreme values," Journal of Econometrics, Elsevier, vol. 141(2), pages 1044-1072, December.
    16. Christoph Lakner & Branko Milanovic, 2016. "Global Income Distribution: From the Fall of the Berlin Wall to the Great Recession," The World Bank Economic Review, World Bank Group, vol. 30(2), pages 203-232.
    17. Christopher R. Bollinger & Barry T. Hirsch & Charles M. Hokayem & James P. Ziliak, 2019. "Trouble in the Tails? What We Know about Earnings Nonresponse 30 Years after Lillard, Smith, and Welch," Journal of Political Economy, University of Chicago Press, vol. 127(5), pages 2143-2185.
    18. Anthony B. Atkinson & Thomas Piketty & Emmanuel Saez, 2011. "Top Incomes in the Long Run of History," Journal of Economic Literature, American Economic Association, vol. 49(1), pages 3-71, March.
    19. Lillard, Lee & Smith, James P & Welch, Finis, 1986. "What Do We Really Know about Wages? The Importance of Nonreporting and Census Imputation," Journal of Political Economy, University of Chicago Press, vol. 94(3), pages 489-506, June.
    20. Stephen P. Jenkins, 2017. "Pareto Models, Top Incomes and Recent Trends in UK Income Inequality," Economica, London School of Economics and Political Science, vol. 84(334), pages 261-289, April.
    21. Fichtenbaum, Rudy & Shahidi, Hushang, 1988. "Truncation Bias and the Measurement of Income Inequality," Journal of Business & Economic Statistics, American Statistical Association, vol. 6(3), pages 335-337, July.
    22. Vladimir Hlasny & Paolo Verme, 2018. "Top Incomes and Inequality Measurement: A Comparative Analysis of Correction Methods Using the EU SILC Data," Econometrics, MDPI, vol. 6(2), pages 1-21, June.
    23. Thomas Blanchet & Ignacio Flores & Marc Morgan, 2022. "The weight of the rich: improving surveys using tax data," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 20(1), pages 119-150, March.
    24. Anton Korinek & Johan Mistiaen & Martin Ravallion, 2006. "Survey nonresponse and the distribution of income," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 4(1), pages 33-55, April.
    25. Singh, S K & Maddala, G S, 1976. "A Function for Size Distribution of Incomes," Econometrica, Econometric Society, vol. 44(5), pages 963-970, September.
    26. Korinek, Anton & Mistiaen, Johan A. & Ravallion, Martin, 2007. "An econometric method of correcting for unit nonresponse bias in surveys," Journal of Econometrics, Elsevier, vol. 136(1), pages 213-235, January.
    27. Philip Armour & Richard V. Burkhauser & Jeff Larrimore, 2016. "Using The Pareto Distribution To Improve Estimates Of Topcoded Earnings," Economic Inquiry, Western Economic Association International, vol. 54(2), pages 1263-1273, April.
    28. F. Thomas Juster & Kathleen A. Kuester, 1991. "Differences In The Measurement Of Wealth, Wealth Inequality And Wealth Composition Obtained From Alternative U.S. Wealth Surveys," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 37(1), pages 33-62, March.
    29. Burkhauser, Richard V. & Feng, Shuaizhang & Larrimore, Jeff, 2010. "Improving imputations of top incomes in the public-use current population survey by using both cell-means and variances," Economics Letters, Elsevier, vol. 108(1), pages 69-72, July.
    30. James B. McDonald, 2008. "Some Generalized Functions for the Size Distribution of Income," Economic Studies in Inequality, Social Exclusion, and Well-Being, in: Duangkamon Chotikapanich (ed.), Modeling Income Distributions and Lorenz Curves, chapter 3, pages 37-55, Springer.
    31. Angus Deaton, 2005. "ERRATUM: Measuring Poverty in a Growing World (or Measuring Growth in a Poor World)," The Review of Economics and Statistics, MIT Press, vol. 87(2), pages 395-395, May.
    32. Reza Modarres & Joseph L. Gastwirth, 2006. "A Cautionary Note on Estimating the Standard Error of the Gini Index of Inequality," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 68(3), pages 385-390, June.
    33. Cowell, Frank A & Victoria-Feser, Maria-Pia, 1996. "Robustness Properties of Inequality Measures," Econometrica, Econometric Society, vol. 64(1), pages 77-101, January.
    34. Arthur Charpentier & Emmanuel Flachaire, 2019. "Pareto Models for Top Incomes," Working Papers hal-02145024, HAL.
    35. Cowell, Frank A. & Victoria-Feser, Maria-Pia, 1996. "Poverty measurement with contaminated data: A robust approach," European Economic Review, Elsevier, vol. 40(9), pages 1761-1771, December.
    36. Jeff Larrimore & Richard V. Burkhauser & Shuaizhang Feng & Laura Zayatz, 2008. "Consistent Cell Means for Topcoded Incomes in the Public Use March CPS (1976-2007)," NBER Working Papers 13941, National Bureau of Economic Research, Inc.
    37. Piketty, Thomas & Alvaredo, Facundo, 2014. "Measuring Top Incomes and lnequality in the Middle East: Data Limitations and Illustration with the Case of Egypt," CEPR Discussion Papers 10068, C.E.P.R. Discussion Papers.
    38. Bruce Meyer & Nikolas Mittag, 2013. "Misclassification In Binary Choice Models," Working Papers 13-27, Center for Economic Studies, U.S. Census Bureau.
    39. Richard V. Burkhauser & Shuaizhang Feng & Stephen P. Jenkins & Jeff Larrimore, 2012. "Recent Trends in Top Income Shares in the United States: Reconciling Estimates from March CPS and IRS Tax Return Data," The Review of Economics and Statistics, MIT Press, vol. 94(2), pages 371-388, May.
    40. Thurow, Lester C, 1970. "Analyzing the American Income Distribution," American Economic Review, American Economic Association, vol. 60(2), pages 261-269, May.
    41. Mistiaen, Johan A. & Ravallion, Martin, 2003. "Survey compliance and the distribution of income," Policy Research Working Paper Series 2956, The World Bank.
    42. Barry C. Arnold, 2008. "Pareto and Generalized Pareto Distributions," Economic Studies in Inequality, Social Exclusion, and Well-Being, in: Duangkamon Chotikapanich (ed.), Modeling Income Distributions and Lorenz Curves, chapter 7, pages 119-145, Springer.
    43. Vladimir Hlasny, 2020. "Top Expenditure Distribution in Arab Countries and the Inequality Puzzle," Working Papers 549, ECINEQ, Society for the Study of Economic Inequality.
    44. Di An & Roderick J. A. Little, 2007. "Multiple imputation: an alternative to top coding for statistical disclosure control," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 170(4), pages 923-940, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ceriani, Lidia & Hlasny, Vladimir & Verme, Paolo, 2021. "Bottom Incomes and the Measurement of Poverty: A Brief Assessment of the Literature," GLO Discussion Paper Series 914, Global Labor Organization (GLO).
    2. Emmanuel Flachaire & Nora Lustig & Andrea Vigorito, 2023. "Underreporting of Top Incomes and Inequality: A Comparison of Correction Methods using Simulations and Linked Survey and Tax Data," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 69(4), pages 1033-1059, December.
    3. Thomas Blanchet & Ignacio Flores & Marc Morgan, 2022. "The weight of the rich: improving surveys using tax data," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 20(1), pages 119-150, March.
    4. Nora Lustig, 2020. "The ``missing rich'' in household surveys: causes and correction approaches," Working Papers 520, ECINEQ, Society for the Study of Economic Inequality.
    5. Vladimir Hlasny & Paolo Verme, 2018. "Top Incomes and Inequality Measurement: A Comparative Analysis of Correction Methods Using the EU SILC Data," Econometrics, MDPI, vol. 6(2), pages 1-21, June.
    6. Lidia Ceriani & Paolo Verme, 2019. "The inequality of extreme incomes," Working Papers 490, ECINEQ, Society for the Study of Economic Inequality.
    7. Brunori, Paolo & Salas-Rojo, Pedro & Verme, Paolo, 2022. "Estimating Inequality with Missing Incomes," GLO Discussion Paper Series 1138, Global Labor Organization (GLO).
    8. Nora Lustig, 2019. "The “Missing Rich” in Household Surveys: Causes and Correction Approaches," Commitment to Equity (CEQ) Working Paper Series 75, Tulane University, Department of Economics.
    9. Mathias Silva, 2023. "Parametric models of income distributions integrating misreporting and non-response mechanisms," AMSE Working Papers 2311, Aix-Marseille School of Economics, France.
    10. Mathias Silva, 2023. "Parametric models of income distributions integrating misreporting and non-response mechanisms," AMSE Working Papers 2311, Aix-Marseille School of Economics, France.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vladimir Hlasny & Paolo Verme, 2018. "Top Incomes and Inequality Measurement: A Comparative Analysis of Correction Methods Using the EU SILC Data," Econometrics, MDPI, vol. 6(2), pages 1-21, June.
    2. Vladimir Hlasny, 2021. "Parametric representation of the top of income distributions: Options, historical evidence, and model selection," Journal of Economic Surveys, Wiley Blackwell, vol. 35(4), pages 1217-1256, September.
    3. Nora Lustig, 2020. "The ``missing rich'' in household surveys: causes and correction approaches," Working Papers 520, ECINEQ, Society for the Study of Economic Inequality.
    4. Nora Lustig, 2019. "The “Missing Rich” in Household Surveys: Causes and Correction Approaches," Commitment to Equity (CEQ) Working Paper Series 75, Tulane University, Department of Economics.
    5. Jordá, Vanesa & Niño-Zarazúa, Miguel, 2019. "Global inequality: How large is the effect of top incomes?," World Development, Elsevier, vol. 123(C), pages 1-1.
    6. Vladimir Hlasny & Paolo Verme, 2018. "Top Incomes and the Measurement of Inequality in Egypt," The World Bank Economic Review, World Bank Group, vol. 32(2), pages 428-455.
    7. Nora Lustig, 2018. "Measuring the Distribution of Household Income, Consumption and Wealth: State of Play and Measurement Challenges," Working Papers 1801, Tulane University, Department of Economics.
    8. Rafael Carranza & Marc Morgan & Brian Nolan, 2023. "Top Income Adjustments and Inequality: An Investigation of the EU‐SILC," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 69(3), pages 725-754, September.
    9. Diego Winkelried & Bruno Escobar, 2022. "Declining inequality in Latin America? Robustness checks for Peru," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 20(1), pages 223-243, March.
    10. Vladimir Hlasny, 2019. "Redistributive Impacts of Fiscal Policies in Mexico: Corrections for Top Income Measurement Problems," LIS Working papers 765, LIS Cross-National Data Center in Luxembourg.
    11. Mathias Silva, 2023. "Parametric models of income distributions integrating misreporting and non-response mechanisms," AMSE Working Papers 2311, Aix-Marseille School of Economics, France.
    12. Christoph Lakner & Branko Milanovic, 2016. "Global Income Distribution: From the Fall of the Berlin Wall to the Great Recession," The World Bank Economic Review, World Bank Group, vol. 30(2), pages 203-232.
    13. Martin Ravallion, 2022. "Missing Top Income Recipients," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 20(1), pages 205-222, March.
    14. Frank A. Cowell & Philippe Kerm, 2015. "Wealth Inequality: A Survey," Journal of Economic Surveys, Wiley Blackwell, vol. 29(4), pages 671-710, September.
    15. Bartels, Charlotte & Waldenström, Daniel, 2021. "Inequality and top incomes," GLO Discussion Paper Series 959, Global Labor Organization (GLO).
    16. François Bourguignon, 2018. "Simple adjustments of observed distributions for missing income and missing people," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 16(2), pages 171-188, June.
    17. Arthur Charpentier & Emmanuel Flachaire, 2022. "Pareto models for top incomes and wealth," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 20(1), pages 1-25, March.
    18. Stephen P. Jenkins, 2017. "Pareto Models, Top Incomes and Recent Trends in UK Income Inequality," Economica, London School of Economics and Political Science, vol. 84(334), pages 261-289, April.
    19. Lidia Ceriani & Paolo Verme, 2022. "Population Changes and the Measurement of Inequality," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 162(2), pages 549-575, July.
    20. Emmanuel Flachaire & Nora Lustig & Andrea Vigorito, 2023. "Underreporting of Top Incomes and Inequality: A Comparison of Correction Methods using Simulations and Linked Survey and Tax Data," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 69(4), pages 1033-1059, December.

    More about this item

    JEL classification:

    • D31 - Microeconomics - - Distribution - - - Personal Income and Wealth Distribution
    • D63 - Microeconomics - - Welfare Economics - - - Equity, Justice, Inequality, and Other Normative Criteria and Measurement
    • N35 - Economic History - - Labor and Consumers, Demography, Education, Health, Welfare, Income, Wealth, Religion, and Philanthropy - - - Asia including Middle East

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:obuest:v:84:y:2022:i:4:p:749-788. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/sfeixuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.