IDEAS home Printed from
MyIDEAS: Login to save this paper or follow this series

Misclassification In Binary Choice Models

  • Bruce Meyer
  • Nikolas Mittag

We derive the asymptotic bias from misclassification of the dependent variable in binary choice models. Measurement error is necessarily non-classical in this case, which leads to bias in linear and non-linear models even if only the dependent variable is mismeasured. A Monte Carlo study and an application to food stamp receipt show that the bias formulas are useful to analyze the sensitivity of substantive conclusions, to interpret biased coefficients and imply features of the estimates that are robust to misclassification. Using administrative records linked to survey data as validation data, we examine estimators that are consistent under misclassification. They can improve estimates if their assumptions hold, but can aggravate the problem if the assumptions are invalid. The estimators differ in their robustness to such violations, which can be improved by incorporating additional information. We propose tests for the presence and nature of misclassification that can help to choose an estimator.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
File Function: First version, 2013
Download Restriction: no

Paper provided by Center for Economic Studies, U.S. Census Bureau in its series Working Papers with number 13-27.

in new window

Length: 64 pages
Date of creation: May 2013
Date of revision:
Handle: RePEc:cen:wpaper:13-27
Contact details of provider: Postal: 4600 Silver Hill Road, Washington, DC 20233
Phone: (301) 763-6460
Fax: (301) 763-5935
Web page:

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Zvi Eckstein & Kenneth I. Wolpin, 1999. "Why Youths Drop Out of High School: The Impact of Preferences, Opportunities, and Abilities," Econometrica, Econometric Society, vol. 67(6), pages 1295-1340, November.
  2. Imbens, G. & Lancaster, T., 1992. "Case-Control Studies with Contaminated Controls," Harvard Institute of Economic Research Working Papers 1612, Harvard - Institute of Economic Research.
  3. Hausman, J. A. & Abrevaya, Jason & Scott-Morton, F. M., 1998. "Misclassification of the dependent variable in a discrete-response setting," Journal of Econometrics, Elsevier, vol. 87(2), pages 239-269, September.
  4. Han, Aaron K., 1987. "Non-parametric analysis of a generalized regression model : The maximum rank correlation estimator," Journal of Econometrics, Elsevier, vol. 35(2-3), pages 303-316, July.
  5. Black, Dan & Sanders, Seth & Taylor, Lowell, 2003. "Measurement of Higher Education in the Census and Current Population Survey," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 545-554, January.
  6. Bollinger, Christopher R., 1996. "Bounding mean regressions when a binary regressor is mismeasured," Journal of Econometrics, Elsevier, vol. 73(2), pages 387-399, August.
  7. Hausman, J.A. & Morton, F.M.S., 1994. "Misclassification of Dependent Variable in a Discrete Response Setting," Working papers 94-19, Massachusetts Institute of Technology (MIT), Department of Economics.
  8. Horowitz, Joel L, 1992. "A Smoothed Maximum Score Estimator for the Binary Response Model," Econometrica, Econometric Society, vol. 60(3), pages 505-31, May.
  9. Bruce D. Meyer & Wallace K. C. Mok & James X. Sullivan, 2009. "The Under-Reporting of Transfers in Household Surveys: Its Nature and Consequences," Working Papers 0903, Harris School of Public Policy Studies, University of Chicago.
  10. Aigner, Dennis J., 1973. "Regression with a binary independent variable subject to errors of observation," Journal of Econometrics, Elsevier, vol. 1(1), pages 49-59, March.
  11. Ruud, Paul A., 1986. "Consistent estimation of limited dependent variable models despite misspecification of distribution," Journal of Econometrics, Elsevier, vol. 32(1), pages 157-187, June.
  12. Christopher Bollinger & Martin H. David, 2000. "Estimation with Response Error and Non-Response: Food Stamp Participation in the SIPP," Econometric Society World Congress 2000 Contributed Papers 0198, Econometric Society.
  13. Steven D. Levitt, 1997. "Juvenile Crime and Punishment," NBER Working Papers 6191, National Bureau of Economic Research, Inc.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:cen:wpaper:13-27. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Fariha Kamal)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.