IDEAS home Printed from https://ideas.repec.org/p/iza/izadps/dp10266.html
   My bibliography  Save this paper

Correcting for Misreporting of Government Benefits

Author

Listed:
  • Mittag, Nikolas

    (CERGE-EI)

Abstract

Recent validation studies show that survey misreporting is pervasive and biases common analyses. Addressing this problem is further complicated, because validation data are usually convenience samples and access is restricted, making them more suitable to document than to solve the problem. I first use administrative SNAP records linked to survey data to evaluate corrections for misreporting that have been applied to survey data. Second, I develop a method that combines public use data with an estimated conditional distribution from the validation data. It does not require access to the validation data, is simple to implement and applicable to a wide range of econometric models. Using the validation data, I show that this method improves upon both the survey data and the other corrections, particularly for multivariate analyses. Some survey-based corrections also yield large error reductions, which makes them attractive alternatives when validation data do not exist. Finally, I examine whether estimates can be improved based on similar validation data, to mitigate that the population of interest is rarely validated. For SNAP, I provide evidence that extrapolation using the method developed here improves over survey data and corrections without validation data. Deviations from the geographic distribution of program spending are often reduced by a factor of 5 or more. The results suggest substantial differences in program effects, such as reducing the poverty rate by almost one percentage point more, a 75 percent increase over the survey estimate.

Suggested Citation

  • Mittag, Nikolas, 2016. "Correcting for Misreporting of Government Benefits," IZA Discussion Papers 10266, Institute of Labor Economics (IZA).
  • Handle: RePEc:iza:izadps:dp10266
    as

    Download full text from publisher

    File URL: https://docs.iza.org/dp10266.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hilary W. Hoynes & Diane Whitmore Schanzenbach, 2009. "Consumption Responses to In-Kind Transfers: Evidence from the Introduction of the Food Stamp Program," American Economic Journal: Applied Economics, American Economic Association, vol. 1(4), pages 109-139, October.
    2. Fraker, Thomas & Moffitt, Robert, 1988. "The effect of food stamps on labor supply : A bivariate selection model," Journal of Public Economics, Elsevier, vol. 35(1), pages 25-56, February.
    3. Newman, Constance & Scherpf, Erik, 2013. "Supplemental Nutrition Assistance Program (SNAP) Access at the State and County Levels: Evidence From Texas SNAP Administrative Records and the American Community Survey," Economic Research Report 262218, United States Department of Agriculture, Economic Research Service.
    4. Stéphane Bonhomme & Jean-Marc Robin, 2010. "Generalized Non-Parametric Deconvolution with an Application to Earnings Dynamics," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 77(2), pages 491-533.
    5. John M. Abowd & Martha H. Stinson, 2013. "Estimating Measurement Error in Annual Job Earnings: A Comparison of Survey and Administrative Data," The Review of Economics and Statistics, MIT Press, vol. 95(5), pages 1451-1467, December.
    6. Christoph Rothe & Dominik Wied, 2013. "Misspecification Testing in a Class of Conditional Distributional Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(501), pages 314-324, March.
    7. Bruce D. Meyer & Nikolas Mittag, 2015. "Using Linked Survey and Administrative Data to Better Measure Income: Implications for Poverty, Program Effectiveness and Holes in the Safety Net," Upjohn Working Papers 15-242, W.E. Upjohn Institute for Employment Research.
    8. Li, Tong, 2000. "Estimation of nonlinear errors-in-variables models: a simulated minimum distance estimator," Statistics & Probability Letters, Elsevier, vol. 47(3), pages 243-248, April.
    9. Keane, Michael & Moffitt, Robert, 1998. "A Structural Model of Multiple Welfare Program Participation and Labor Supply," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(3), pages 553-589, August.
    10. Lorenzo Almada & Ian McCarthy & Rusty Tchernis, 2016. "What Can We Learn about the Effects of Food Stamps on Obesity in the Presence of Misreporting?," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 98(4), pages 997-1017.
    11. Craig Gundersen & Brent Kreider, 2008. "Food Stamps and Food Insecurity: What Can Be Learned in the Presence of Nonclassical Measurement Error?," Journal of Human Resources, University of Wisconsin Press, vol. 43(2), pages 352-382.
    12. Susanne M. Schennach, 2004. "Estimation of Nonlinear Models with Measurement Error," Econometrica, Econometric Society, vol. 72(1), pages 33-75, January.
    13. McFadden, Daniel, 1989. "A Method of Simulated Moments for Estimation of Discrete Response Models without Numerical Integration," Econometrica, Econometric Society, vol. 57(5), pages 995-1026, September.
    14. Bound, John & Krueger, Alan B, 1991. "The Extent of Measurement Error in Longitudinal Earnings Data: Do Two Wrongs Make a Right?," Journal of Labor Economics, University of Chicago Press, vol. 9(1), pages 1-24, January.
    15. Nguimkeu, Pierre & Denteh, Augustine & Tchernis, Rusty, 2019. "On the estimation of treatment effects with endogenous misreporting," Journal of Econometrics, Elsevier, vol. 208(2), pages 487-506.
    16. Brownstone, David & Valletta, Robert G, 1996. "Modeling Earnings Measurement Error: A Multiple Imputation Approach," University of California Transportation Center, Working Papers qt3gb0k9b5, University of California Transportation Center.
    17. Yingyao Hu & Susanne M. Schennach, 2008. "Instrumental Variable Treatment of Nonclassical Measurement Error Models," Econometrica, Econometric Society, vol. 76(1), pages 195-216, January.
    18. Benjamin Cerf Harris, 2014. "Within and Across County Variation in SNAP Misreporting: Evidence from Linked ACS and Administrative Records," CARRA Working Papers 2014-05, Center for Economic Studies, U.S. Census Bureau.
    19. Christopher R. Bollinger & Barry T. Hirsch, 2006. "Match Bias from Earnings Imputation in the Current Population Survey: The Case of Imperfect Matching," Journal of Labor Economics, University of Chicago Press, vol. 24(3), pages 483-520, July.
    20. Paul A. Hagstrom, 1996. "The Food Stamp Participation and Labor Supply of Married Couples: An Empirical Analysis of Joint Decisions," Journal of Human Resources, University of Wisconsin Press, vol. 31(2), pages 383-403.
    21. Sepanski, J. H. & Carroll, R. J., 1993. "Semiparametric quasilikelihood and variance function estimation in measurement error models," Journal of Econometrics, Elsevier, vol. 58(1-2), pages 223-256, July.
    22. Bruce Meyer & Nikolas Mittag, 2013. "Misclassification In Binary Choice Models," Working Papers 13-27, Center for Economic Studies, U.S. Census Bureau.
    23. Yonatan Ben-Shalom & Robert A. Moffitt & John Karl Scholz, "undated". "An Assessment of the Effectiveness of Anti-Poverty Programs in the United States," Mathematica Policy Research Reports cfc848ed6ab647bcb38ab47bb, Mathematica Policy Research.
    24. Bollinger, Christopher R, 1998. "Measurement Error in the Current Population Survey: A Nonparametric Look," Journal of Labor Economics, University of Chicago Press, vol. 16(3), pages 576-594, July.
    25. Hong, Han & Tamer, Elie, 2003. "A simple estimator for nonlinear error in variable models," Journal of Econometrics, Elsevier, vol. 117(1), pages 1-19, November.
    26. Wooldridge, Jeffrey M., 2007. "Inverse probability weighted estimation for general missing data problems," Journal of Econometrics, Elsevier, vol. 141(2), pages 1281-1301, December.
    27. Barry T. Hirsch & Edward J. Schumacher, 2004. "Match Bias in Wage Gap Estimates Due to Earnings Imputation," Journal of Labor Economics, University of Chicago Press, vol. 22(3), pages 689-722, July.
    28. Brownstone, David & Valletta, Robert G, 1996. "Modeling Earnings Measurement Error: A Multiple Imputation Approach," The Review of Economics and Statistics, MIT Press, vol. 78(4), pages 705-717, November.
    29. Drechsler, Jörg & Reiter, Jerome P., 2010. "Sampling With Synthesis: A New Approach for Releasing Public Use Census Microdata," Journal of the American Statistical Association, American Statistical Association, vol. 105(492), pages 1347-1357.
    30. Scherpf, Erik & Newman, Constance & Prell, Mark, 2014. "Targeting of Supplemental Nutrition Assistance Program Benefits: Evidence from the ACS and NY SNAP Administrative Records," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 174295, Agricultural and Applied Economics Association.
    31. Black, Dan & Sanders, Seth & Taylor, Lowell, 2003. "Measurement of Higher Education in the Census and Current Population Survey," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 545-554, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Meyer, Bruce D. & Mittag, Nikolas, 2017. "Using Linked Survey and Administrative Data to Better Measure Income: Implications for Poverty, Program Effectiveness and Holes in the Safety Net," IZA Discussion Papers 10943, Institute of Labor Economics (IZA).
    2. Charles Courtemanche & Augustine Denteh & Rusty Tchernis, 2019. "Estimating the Associations between SNAP and Food Insecurity, Obesity, and Food Purchases with Imperfect Administrative Measures of Participation," Southern Economic Journal, John Wiley & Sons, vol. 86(1), pages 202-228, July.
    3. Zachary Parolin, 2019. "The Effect of Benefit Underreporting on Estimates of Poverty in the United States," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 144(2), pages 869-898, July.
    4. Kerstin Bruckmeier & Regina T. Riphahn & Jürgen Wiemers, 2021. "Misreporting of program take-up in survey data and its consequences for measuring non-take-up: new evidence from linked administrative and survey data," Empirical Economics, Springer, vol. 61(3), pages 1567-1616, September.
    5. Bruce Meyer & Nikolas Mittag, 2017. "Using Linked Survey and Administrative Data to Better Measure Income: Implications for Poverty, Program Effectiveness and Holes in the Safety Net," Working Papers 2017-075, Human Capital and Economic Opportunity Working Group.
    6. Bruckmeier, Kerstin & Riphahn, Regina T. & Wiemers, Jürgen, 2019. "Benefit underreporting in survey data and its consequences for measuring non-take-up: new evidence from linked administrative and survey data," IAB-Discussion Paper 201906, Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany].

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nikolas Mittag, 2013. "A Method Of Correcting For Misreporting Applied To The Food Stamp Program," Working Papers 13-28, Center for Economic Studies, U.S. Census Bureau.
    2. Bruce D. Meyer & Nikolas Mittag, 2015. "Using Linked Survey and Administrative Data to Better Measure Income: Implications for Poverty, Program Effectiveness and Holes in the Safety Net," NBER Working Papers 21676, National Bureau of Economic Research, Inc.
    3. Meyer, Bruce D. & Mittag, Nikolas, 2017. "Using Linked Survey and Administrative Data to Better Measure Income: Implications for Poverty, Program Effectiveness and Holes in the Safety Net," IZA Discussion Papers 10943, Institute of Labor Economics (IZA).
    4. Bruce Meyer & Nikolas Mittag, 2017. "Using Linked Survey and Administrative Data to Better Measure Income: Implications for Poverty, Program Effectiveness and Holes in the Safety Net," Working Papers 2017-075, Human Capital and Economic Opportunity Working Group.
    5. Meyer, Bruce D. & Mittag, Nikolas, 2019. "Combining Administrative and Survey Data to Improve Income Measurement," IZA Discussion Papers 12266, Institute of Labor Economics (IZA).
    6. Bruce D. Meyer & Nikolas Mittag, 2019. "Combining Administrative and Survey Data to Improve Income Measurement," NBER Working Papers 25738, National Bureau of Economic Research, Inc.
    7. Susanne M. Schennach, 2012. "Measurement error in nonlinear models - a review," CeMMAP working papers 41/12, Institute for Fiscal Studies.
    8. Xiaohong Chen & Han Hong & Denis Nekipelov, 2011. "Nonlinear Models of Measurement Errors," Journal of Economic Literature, American Economic Association, vol. 49(4), pages 901-937, December.
    9. Lorenzo Almada & Ian McCarthy & Rusty Tchernis, 2016. "What Can We Learn about the Effects of Food Stamps on Obesity in the Presence of Misreporting?," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 98(4), pages 997-1017.
    10. Song, Suyong, 2015. "Semiparametric estimation of models with conditional moment restrictions in the presence of nonclassical measurement errors," Journal of Econometrics, Elsevier, vol. 185(1), pages 95-109.
    11. Adam Bee & Joshua Mitchell & Nikolas Mittag & Jonathan Rothbaum & Carl Sanders & Lawrence Schmidt & Matthew Unrath, 2023. "National Experimental Wellbeing Statistics - Version 1," Working Papers 23-04, Center for Economic Studies, U.S. Census Bureau.
    12. Bruce D. Meyer & Derek Wu, 2018. "The Poverty Reduction of Social Security and Means-Tested Transfers," NBER Working Papers 24567, National Bureau of Economic Research, Inc.
    13. Nikolas Mittag, 2019. "Correcting for Misreporting of Government Benefits," American Economic Journal: Economic Policy, American Economic Association, vol. 11(2), pages 142-164, May.
    14. Hu, Yingyao & Schennach, Susanne & Shiu, Ji-Liang, 2022. "Identification of nonparametric monotonic regression models with continuous nonclassical measurement errors," Journal of Econometrics, Elsevier, vol. 226(2), pages 269-294.
    15. Hoynes, Hilary Williamson & Schanzenbach, Diane Whitmore, 2012. "Work incentives and the Food Stamp Program," Journal of Public Economics, Elsevier, vol. 96(1), pages 151-162.
    16. Michele Lalla & Maddalena Cavicchioli, 2020. "Nonresponse and measurement errors in income: matching individual survey data with administrative tax data," Department of Economics 0170, University of Modena and Reggio E., Faculty of Economics "Marco Biagi".
    17. Helen H. Jensen & Brent Kreider & Oleksandr Zhylyevskyy, 2019. "Investigating Treatment Effects of Participating Jointly in SNAP and WIC when the Treatment Is Validated Only for SNAP," Southern Economic Journal, John Wiley & Sons, vol. 86(1), pages 124-155, July.
    18. Jenkins, Stephen P. & Rios-Avila, Fernando, 2021. "Reconciling Reports: Modelling Employment Earnings and Measurement Errors Using Linked Survey and Administrative Data," IZA Discussion Papers 14405, Institute of Labor Economics (IZA).
    19. Jeremy J. Nalewaik, 2014. "Missing Variation in the Great Moderation: Lack of Signal Error and OLS Regression," Finance and Economics Discussion Series 2014-27, Board of Governors of the Federal Reserve System (U.S.).
    20. Janet Currie & Firouz Gahvari, 2008. "Transfers in Cash and In-Kind: Theory Meets the Data," Journal of Economic Literature, American Economic Association, vol. 46(2), pages 333-383, June.

    More about this item

    Keywords

    food stamps; misreporting; survey errors; measurement error; poverty;
    All these keywords.

    JEL classification:

    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C81 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Methodology for Collecting, Estimating, and Organizing Microeconomic Data; Data Access
    • I32 - Health, Education, and Welfare - - Welfare, Well-Being, and Poverty - - - Measurement and Analysis of Poverty
    • I38 - Health, Education, and Welfare - - Welfare, Well-Being, and Poverty - - - Government Programs; Provision and Effects of Welfare Programs

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:iza:izadps:dp10266. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Holger Hinte (email available below). General contact details of provider: https://edirc.repec.org/data/izaaade.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.