IDEAS home Printed from
   My bibliography  Save this article

Estimation of nonlinear errors-in-variables models: a simulated minimum distance estimator


  • Li, Tong


Hsiao (1989, J. Econometrics 41, 159-185) proposes a minimum distance estimator in estimating the structural nonlinear errors-in-varaibles models. We propose a simulated minimum distance estimator that is consistent and resolves the computational difficulty involved in the minimum distance estimator.

Suggested Citation

  • Li, Tong, 2000. "Estimation of nonlinear errors-in-variables models: a simulated minimum distance estimator," Statistics & Probability Letters, Elsevier, vol. 47(3), pages 243-248, April.
  • Handle: RePEc:eee:stapro:v:47:y:2000:i:3:p:243-248

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Amemiya, Yasuo, 1985. "Instrumental variable estimator for the nonlinear errors-in-variables model," Journal of Econometrics, Elsevier, vol. 28(3), pages 273-289, June.
    2. Pakes, Ariel & Pollard, David, 1989. "Simulation and the Asymptotics of Optimization Estimators," Econometrica, Econometric Society, vol. 57(5), pages 1027-1057, September.
    3. Hsiao, Cheng, 1989. "Consistent estimation for some nonlinear errors-in-variables models," Journal of Econometrics, Elsevier, vol. 41(1), pages 159-185, May.
    4. Laffont, Jean-Jacques & Ossard, Herve & Vuong, Quang, 1995. "Econometrics of First-Price Auctions," Econometrica, Econometric Society, vol. 63(4), pages 953-980, July.
    5. Hsiao, C., 1992. "Nonlinear Latent Variable Models," Papers 9211, Southern California - Department of Economics.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Joop Hartog & Luis Díaz-Serrano, 2007. "Earnings risk and demand for higher education: A cross-section test for Spain," Journal of Applied Economics, Universidad del CEMA, vol. 10, pages 1-28, May.
    2. Li, Tong & Hsiao, Cheng, 2004. "Robust estimation of generalized linear models with measurement errors," Journal of Econometrics, Elsevier, vol. 118(1-2), pages 51-65.
    3. Li, Tong, 2002. "Robust and consistent estimation of nonlinear errors-in-variables models," Journal of Econometrics, Elsevier, vol. 110(1), pages 1-26, September.

    More about this item


    Structural models Consistency;


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:47:y:2000:i:3:p:243-248. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.