IDEAS home Printed from
MyIDEAS: Login to save this paper or follow this series

A Method Of Correcting For Misreporting Applied To The Food Stamp Program

  • Nikolas Mittag

Survey misreporting is known to be pervasive and bias common statistical analyses. In this paper, I first use administrative data on SNAP receipt and amounts linked to American Community Survey data from New York State to show that survey data can misrepresent the program in important ways. For example, more than 1.4 billion dollars received are not reported in New York State alone. 46 percent of dollars received by house- holds with annual income above the poverty line are not reported in the survey data, while only 19 percent are missing below the poverty line. Standard corrections for measurement error cannot remove these biases. I then develop a method to obtain consistent estimates by combining parameter estimates from the linked data with publicly available data. This conditional density method recovers the correct estimates using public use data only, which solves the problem that access to linked administrative data is usually restricted. I examine the degree to which this approach can be used to extrapolate across time and geography, in order to solve the problem that validation data is often based on a convenience sample. I present evidence from within New York State that the extent of heterogeneity is small enough to make extrapolation work well across both time and geography. Extrapolation to the entire U.S. yields substantive differences to survey data and reduces deviations from official aggregates by a factor of 4 to 9 compared to survey aggregates.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
File Function: First version, 2013
Download Restriction: no

Paper provided by Center for Economic Studies, U.S. Census Bureau in its series Working Papers with number 13-28.

in new window

Length: 58 pages
Date of creation: May 2013
Date of revision:
Handle: RePEc:cen:wpaper:13-28
Contact details of provider: Postal: 4600 Silver Hill Road, Washington, DC 20233
Phone: (301) 763-6460
Fax: (301) 763-5935
Web page:

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Martin H. David & Christopher R. Bollinger, 2005. "I didn't tell, and I won't tell: dynamic response error in the SIPP," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(4), pages 563-569.
  2. Bruce D. Meyer & James X. Sullivan, 2003. "Measuring the Well-Being of the Poor Using Income and Consumption," NBER Working Papers 9760, National Bureau of Economic Research, Inc.
  3. Hsiao, Cheng, 1989. "Consistent estimation for some nonlinear errors-in-variables models," Journal of Econometrics, Elsevier, vol. 41(1), pages 159-185, May.
  4. Janet Currie & Firouz Gahvari, 2007. "Transfers in Cash and In Kind: Theory Meets the Data," NBER Working Papers 13557, National Bureau of Economic Research, Inc.
  5. Gundersen, Craig & Kreider, Brent, 2006. "Food Stamps and Food Insecurity: What Can Be Learned in the Presence of Non-Classical Measurement Error?," Staff General Research Papers 12690, Iowa State University, Department of Economics.
  6. John Bound & Alan B. Krueger, 1989. "The Extent of Measurement Error In Longitudinal Earnings Data: Do Two Wrongs Make A Right?," NBER Working Papers 2885, National Bureau of Economic Research, Inc.
  7. Bollinger, Christopher R, 1998. "Measurement Error in the Current Population Survey: A Nonparametric Look," Journal of Labor Economics, University of Chicago Press, vol. 16(3), pages 576-94, July.
  8. Stéphane Bonhomme & Jean-Marc Robin, 2008. "Generalized nonparametric deconvolution with an application to earnings dynamics," CeMMAP working papers CWP03/08, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
  9. Yingyao Hu & Geert Ridder, 2009. "Estimation of Nonlinear Models with Mismeasured Regressors Using Marginal Information," Economics Working Paper Archive 554, The Johns Hopkins University,Department of Economics.
  10. Bruce D. Meyer & Wallace K. C. Mok & James X. Sullivan, 2009. "The Under-Reporting of Transfers in Household Surveys: Its Nature and Consequences," NBER Working Papers 15181, National Bureau of Economic Research, Inc.
  11. Li, Tong, 2002. "Robust and consistent estimation of nonlinear errors-in-variables models," Journal of Econometrics, Elsevier, vol. 110(1), pages 1-26, September.
  12. Dan A. Black & Jeffrey A. Smith, 2006. "Estimating the Returns to College Quality with Multiple Proxies for Quality," Journal of Labor Economics, University of Chicago Press, vol. 24(3), pages 701-728, July.
  13. Brownstone, David & Valletta, Robert G, 1996. "Modeling Earnings Measurement Error: A Multiple Imputation Approach," The Review of Economics and Statistics, MIT Press, vol. 78(4), pages 705-17, November.
  14. Hilary W. Hoynes & Diane Whitmore Schanzenbach, 2009. "Consumption Responses to In-Kind Transfers: Evidence from the Introduction of the Food Stamp Program," American Economic Journal: Applied Economics, American Economic Association, vol. 1(4), pages 109-39, October.
  15. Christopher R. Bollinger, 2003. "Measurement Error in Human Capital and the Black-White Wage Gap," The Review of Economics and Statistics, MIT Press, vol. 85(3), pages 578-585, August.
  16. Paul A. Hagstrom, 1996. "The Food Stamp Participation and Labor Supply of Married Couples: An Empirical Analysis of Joint Decisions," Journal of Human Resources, University of Wisconsin Press, vol. 31(2), pages 383-403.
  17. Susanne M. Schennach, 2004. "Estimation of Nonlinear Models with Measurement Error," Econometrica, Econometric Society, vol. 72(1), pages 33-75, 01.
  18. Black, Dan & Sanders, Seth & Taylor, Lowell, 2003. "Measurement of Higher Education in the Census and Current Population Survey," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 545-554, January.
  19. Drechsler, Jörg & Reiter, Jerome P., 2010. "Sampling With Synthesis: A New Approach for Releasing Public Use Census Microdata," Journal of the American Statistical Association, American Statistical Association, vol. 105(492), pages 1347-1357.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:cen:wpaper:13-28. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Fariha Kamal)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.