IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this article

Integrated day-ahead and hour-ahead operation model of discos in retail electricity markets considering DGs and CO2 emission penalty cost

  • Ghadikolaei, Hadi Moghimi
  • Tajik, Elham
  • Aghaei, Jamshid
  • Charwand, Mansour
Registered author(s):

    This paper proposes a new framework for the operation of distribution companies (discos) in the liberalized electricity market environment considering distributed generation (DG) units and carbon dioxide (CO2) emission penalty cost. The proposed short-term framework is a two-stage model. The first stage, namely day-ahead stage, deals with the activities of discos. This stage includes a optimization problem to minimize the costs of distribution company (operational and CO2 emission costs). The first stage is formulated as a mixed integer nonlinear programming (MINLP) framework using the Benders decomposition to determine the decisions of discos to buy power from grid, schedule the DG units and contract with interruptible loads (ILs). The results of the first stage are imposed as the boundary constraints in the second stage which deals with the activities of discos in an hour-ahead period. In the hour-ahead stage, the retailers determine the amount of purchased active and reactive power from the grid and the production of each DG unit in the energy and reserve market keeping in mind its day-ahead decision to maximize the desired short-term profit. Finally, the efficiency of the proposed framework is studied on a case study.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261912001286
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal Applied Energy.

    Volume (Year): 95 (2012)
    Issue (Month): C ()
    Pages: 174-185

    as
    in new window

    Handle: RePEc:eee:appene:v:95:y:2012:i:c:p:174-185
    Contact details of provider: Web page: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description

    Order Information: Postal: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
    Web: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Woo, Chi-Keung & Horowitz, Ira & Olson, Arne & Horii, Brian & Baskette, Carmen, 2006. "Efficient frontiers for electricity procurement by an LDC with multiple purchase options," Omega, Elsevier, vol. 34(1), pages 70-80, January.
    2. Lesser, Jonathan A. & Su, Xuejuan, 2008. "Design of an economically efficient feed-in tariff structure for renewable energy development," Energy Policy, Elsevier, vol. 36(3), pages 981-990, March.
    3. Woo, Chi-Keung & Karimov, Rouslan I. & Horowitz, Ira, 2004. "Managing electricity procurement cost and risk by a local distribution company," Energy Policy, Elsevier, vol. 32(5), pages 635-645, March.
    4. Greening, Lorna A., 2010. "Demand response resources: Who is responsible for implementation in a deregulated market?," Energy, Elsevier, vol. 35(4), pages 1518-1525.
    5. Johansson, Bengt, 2006. "Climate policy instruments and industry--effects and potential responses in the Swedish context," Energy Policy, Elsevier, vol. 34(15), pages 2344-2360, October.
    6. Vahidinasab, V. & Jadid, S., 2009. "Multiobjective environmental/techno-economic approach for strategic bidding in energy markets," Applied Energy, Elsevier, vol. 86(4), pages 496-504, April.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:95:y:2012:i:c:p:174-185. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Shamier, Wendy)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.