IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v163y2018icp969-985.html
   My bibliography  Save this article

Peak load management based on hybrid power generation and demand response

Author

Listed:
  • Yu, Dongmin
  • liu, Huanan
  • Bresser, Charis

Abstract

Industrial customers of electric energy can obtain the energy from different sources such as electricity market, reciprocal agreements, small-scale turbines, batteries, wind generation, solar panel generation and the demand response program (DeRP) participants. Due to volatilities in electricity market, the overall price of energy provision for industrial consumers cannot be determined. In this work, a new optimization approach is developed for modeling the uncertainty of pool yield rate. Also, a new operation method of risk-averse proposed and contrasted with risk-neutral method is suggested. In this process, DeRP is utilized in order to decrease the overall price of electric energy for industrial customers. To show the efficiency of proposed method, fare comparison is presented between the deterministic approach and proposed optimization model with and without considering the DeRP. Obtained results show that, implementing the DeRP, the energy provision costs are reduced using risk-neutral and risk-averse approaches, respectively.

Suggested Citation

  • Yu, Dongmin & liu, Huanan & Bresser, Charis, 2018. "Peak load management based on hybrid power generation and demand response," Energy, Elsevier, vol. 163(C), pages 969-985.
  • Handle: RePEc:eee:energy:v:163:y:2018:i:c:p:969-985
    DOI: 10.1016/j.energy.2018.08.177
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218317134
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.08.177?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Koltsaklis, Nikolaos E. & Liu, Pei & Georgiadis, Michael C., 2015. "An integrated stochastic multi-regional long-term energy planning model incorporating autonomous power systems and demand response," Energy, Elsevier, vol. 82(C), pages 865-888.
    2. Nojavan, Sayyad & Zare, Kazem & Mohammadi-Ivatloo, Behnam, 2017. "Optimal stochastic energy management of retailer based on selling price determination under smart grid environment in the presence of demand response program," Applied Energy, Elsevier, vol. 187(C), pages 449-464.
    3. C-K Woo & I Horowitz & B Horii & R I Karimov, 2004. "The efficient frontier for spot and forward purchases: an application to electricity," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(11), pages 1130-1136, November.
    4. Yang, Fei & Xia, Xiaohua, 2017. "Techno-economic and environmental optimization of a household photovoltaic-battery hybrid power system within demand side management," Renewable Energy, Elsevier, vol. 108(C), pages 132-143.
    5. Deng, S.J. & Oren, S.S., 2006. "Electricity derivatives and risk management," Energy, Elsevier, vol. 31(6), pages 940-953.
    6. Zare, Kazem & Moghaddam, Mohsen Parsa & Sheikh El Eslami, Mohammad Kazem, 2010. "Demand bidding construction for a large consumer through a hybrid IGDT-probability methodology," Energy, Elsevier, vol. 35(7), pages 2999-3007.
    7. Ghadimi, Noradin & Akbarimajd, Adel & Shayeghi, Hossein & Abedinia, Oveis, 2018. "Two stage forecast engine with feature selection technique and improved meta-heuristic algorithm for electricity load forecasting," Energy, Elsevier, vol. 161(C), pages 130-142.
    8. Woo, Chi-Keung & Horowitz, Ira & Olson, Arne & Horii, Brian & Baskette, Carmen, 2006. "Efficient frontiers for electricity procurement by an LDC with multiple purchase options," Omega, Elsevier, vol. 34(1), pages 70-80, January.
    9. Vishnupriyan, J. & Manoharan, P.S., 2017. "Demand side management approach to rural electrification of different climate zones in Indian state of Tamil Nadu," Energy, Elsevier, vol. 138(C), pages 799-815.
    10. Nouri, Alireza & Khodaei, Hossein & Darvishan, Ayda & Sharifian, Seyedmehdi & Ghadimi, Noradin, 2018. "Optimal performance of fuel cell-CHP-battery based micro-grid under real-time energy management: An epsilon constraint method and fuzzy satisfying approach," Energy, Elsevier, vol. 159(C), pages 121-133.
    11. Ogunjuyigbe, A.S.O. & Ayodele, T.R. & Akinola, O.A., 2017. "User satisfaction-induced demand side load management in residential buildings with user budget constraint," Applied Energy, Elsevier, vol. 187(C), pages 352-366.
    12. Iria, José & Soares, Filipe & Matos, Manuel, 2018. "Optimal supply and demand bidding strategy for an aggregator of small prosumers," Applied Energy, Elsevier, vol. 213(C), pages 658-669.
    13. Paul R. Kleindorfer & Lide Li, 2005. "Multi-Period VaR-Constrained Portfolio Optimization with Applications to the Electric Power Sector," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 1-26.
    14. Woo, Chi-Keung & Karimov, Rouslan I. & Horowitz, Ira, 2004. "Managing electricity procurement cost and risk by a local distribution company," Energy Policy, Elsevier, vol. 32(5), pages 635-645, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Roldán-Blay, Carlos & Escrivá-Escrivá, Guillermo & Roldán-Porta, Carlos, 2019. "Improving the benefits of demand response participation in facilities with distributed energy resources," Energy, Elsevier, vol. 169(C), pages 710-718.
    2. Luo, X.J. & Fong, K.F., 2019. "Development of integrated demand and supply side management strategy of multi-energy system for residential building application," Applied Energy, Elsevier, vol. 242(C), pages 570-587.
    3. Talaat, M. & Hatata, A.Y. & Alsayyari, Abdulaziz S. & Alblawi, Adel, 2020. "A smart load management system based on the grasshopper optimization algorithm using the under-frequency load shedding approach," Energy, Elsevier, vol. 190(C).
    4. Ramin Nourollahi & Pouya Salyani & Kazem Zare & Behnam Mohammadi-Ivatloo & Zulkurnain Abdul-Malek, 2022. "Peak-Load Management of Distribution Network Using Conservation Voltage Reduction and Dynamic Thermal Rating," Sustainability, MDPI, vol. 14(18), pages 1-17, September.
    5. Zia, Muhammad Fahad & Elbouchikhi, Elhoussin & Benbouzid, Mohamed, 2019. "Optimal operational planning of scalable DC microgrid with demand response, islanding, and battery degradation cost considerations," Applied Energy, Elsevier, vol. 237(C), pages 695-707.
    6. Tian, Xiaoge & Chen, Weiming & Hu, Jinglu, 2023. "Game-theoretic modeling of power supply chain coordination under demand variation in China: A case study of Guangdong Province," Energy, Elsevier, vol. 262(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Woo, C.K. & Zarnikau, J. & Moore, J. & Horowitz, I., 2011. "Wind generation and zonal-market price divergence: Evidence from Texas," Energy Policy, Elsevier, vol. 39(7), pages 3928-3938, July.
    2. Cao, K.H. & Qi, H.S. & Tsai, C.H. & Woo, C.K. & Zarnikau, J., 2021. "Energy trading efficiency in the US Midcontinent electricity markets," Applied Energy, Elsevier, vol. 302(C).
    3. Brown, D.P. & Tsai, C.H. & Woo, C.K. & Zarnikau, J. & Zhu, S., 2020. "Residential electricity pricing in Texas's competitive retail market," Energy Economics, Elsevier, vol. 92(C).
    4. Zare, Kazem & Moghaddam, Mohsen Parsa & Sheikh El Eslami, Mohammad Kazem, 2010. "Electricity procurement for large consumers based on Information Gap Decision Theory," Energy Policy, Elsevier, vol. 38(1), pages 234-242, January.
    5. Woo, C.K. & Sreedharan, P. & Hargreaves, J. & Kahrl, F. & Wang, J. & Horowitz, I., 2014. "A review of electricity product differentiation," Applied Energy, Elsevier, vol. 114(C), pages 262-272.
    6. Woo, C.K. & Chen, Y. & Olson, A. & Moore, J. & Schlag, N. & Ong, A. & Ho, T., 2017. "Electricity price behavior and carbon trading: New evidence from California," Applied Energy, Elsevier, vol. 204(C), pages 531-543.
    7. Chi-Keung Woo & Jay Zarnikau & Asher Tishler & Kang Hua Cao, 2022. "Insuring a Small Retail Electric Provider’s Procurement Cost Risk in Texas," Energies, MDPI, vol. 16(1), pages 1-12, December.
    8. Deng, Shi-Jie & Xu, Li, 2009. "Mean-risk efficient portfolio analysis of demand response and supply resources," Energy, Elsevier, vol. 34(10), pages 1523-1529.
    9. Zarnikau, J. & Woo, C.K. & Zhu, S. & Tsai, C.H., 2019. "Market price behavior of wholesale electricity products: Texas," Energy Policy, Elsevier, vol. 125(C), pages 418-428.
    10. Woo, C.K. & Moore, J. & Schneiderman, B. & Ho, T. & Olson, A. & Alagappan, L. & Chawla, K. & Toyama, N. & Zarnikau, J., 2016. "Merit-order effects of renewable energy and price divergence in California’s day-ahead and real-time electricity markets," Energy Policy, Elsevier, vol. 92(C), pages 299-312.
    11. Woo, C.K. & Shiu, A. & Liu, Y. & Luo, X. & Zarnikau, J., 2018. "Consumption effects of an electricity decarbonization policy: Hong Kong," Energy, Elsevier, vol. 144(C), pages 887-902.
    12. Sun, Yougang & Xu, Junqi & Lin, Guobin & Ni, Fei & Simoes, Rolando, 2018. "An optimal performance based new multi-objective model for heat and power hub in large scale users," Energy, Elsevier, vol. 161(C), pages 1234-1249.
    13. Woo, C.K. & Horowitz, I. & Moore, J. & Pacheco, A., 2011. "The impact of wind generation on the electricity spot-market price level and variance: The Texas experience," Energy Policy, Elsevier, vol. 39(7), pages 3939-3944, July.
    14. Woo, C.K. & Milstein, I. & Tishler, A. & Zarnikau, J., 2019. "A wholesale electricity market design sans missing money and price manipulation," Energy Policy, Elsevier, vol. 134(C).
    15. Debbie Dupuis, Geneviève Gauthier, and Fréderic Godin, 2016. "Short-term Hedging for an Electricity Retailer," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    16. Rubin, Ofir David, 2010. "Equilibrium pricing in electricity markets with wind power," ISU General Staff Papers 201001010800002361, Iowa State University, Department of Economics.
    17. Ghiasi, Mohammad, 2019. "Detailed study, multi-objective optimization, and design of an AC-DC smart microgrid with hybrid renewable energy resources," Energy, Elsevier, vol. 169(C), pages 496-507.
    18. Yumi Oum & Shmuel S. Oren, 2010. "Optimal Static Hedging of Volumetric Risk in a Competitive Wholesale Electricity Market," Decision Analysis, INFORMS, vol. 7(1), pages 107-122, March.
    19. Ghadikolaei, Hadi Moghimi & Tajik, Elham & Aghaei, Jamshid & Charwand, Mansour, 2012. "Integrated day-ahead and hour-ahead operation model of discos in retail electricity markets considering DGs and CO2 emission penalty cost," Applied Energy, Elsevier, vol. 95(C), pages 174-185.
    20. Chi-Keung Woo, Ira Horowitz, Jay Zarnikau, Jack Moore, Brendan Schneiderman, Tony Ho, and Eric Leung, 2016. "What Moves the Ex Post Variable Profit of Natural-Gas-Fired Generation in California?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:163:y:2018:i:c:p:969-985. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.