IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v271y2022ics0378377422003110.html
   My bibliography  Save this article

Remote sensing of field-scale irrigation withdrawals in the central Ogallala aquifer region

Author

Listed:
  • Filippelli, Steven K.
  • Sloggy, Matthew R.
  • Vogeler, Jody C.
  • Manning, Dale T.
  • Goemans, Christopher
  • Senay, Gabriel B.

Abstract

For agricultural areas facing water scarcity, sustainable water use policy relies on irrigation information that is timely and at a high resolution, but existing publicly available water use data are often insufficient for monitoring compliance or understanding the influence of policy on individual farmer decisions. This study attempts to fill this data gap by using remote sensing to map annual irrigation quantity at the field-scale within the central Ogallala aquifer region of the United States. We compiled in situ annual irrigation volume data at the field scale in the Republican River Basin of Colorado for 2015–2018 and at the Public Land Survey System (PLSS) section scale in western Kansas for 2000–2016, which served as reference data in random forest models that relied on Landsat-based actual evapotranspiration from the Operational Simplified Surface Energy Balance model (SSEBop) along with maps of irrigated area, Landsat spectral indices, climate, soils, and derived hydrologic variables. The models explained 87% of the variability in irrigation volume in Colorado and 75% in Kansas, but accuracy declined when transferring the models in spatial cross-validation (Colorado R2 =0.81; Kansas R2 =0.51) and temporal cross-validation (Colorado R2 =0.82; Kansas R2 =0.68). Predicted annual totals of irrigation volume in western Kansas had a mean absolute error of 11.9%, which was slightly higher than the average annual change of 11%. Use of predicted irrigation maps also lead to an underestimated effect size for a water use restriction policy in Kansas. These results indicate that field- and section-scale irrigation can be mapped with reasonable accuracy within a region and time period that has adequate sample data, but that methods may need to be improved for applying the models more broadly in areas that lack extensive in situ irrigation data to support further research on water use and aid in structuring policy.

Suggested Citation

  • Filippelli, Steven K. & Sloggy, Matthew R. & Vogeler, Jody C. & Manning, Dale T. & Goemans, Christopher & Senay, Gabriel B., 2022. "Remote sensing of field-scale irrigation withdrawals in the central Ogallala aquifer region," Agricultural Water Management, Elsevier, vol. 271(C).
  • Handle: RePEc:eee:agiwat:v:271:y:2022:i:c:s0378377422003110
    DOI: 10.1016/j.agwat.2022.107764
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377422003110
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2022.107764?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Deines, Jillian M. & Schipanski, Meagan E. & Golden, Bill & Zipper, Samuel C. & Nozari, Soheil & Rottler, Caitlin & Guerrero, Bridget & Sharda, Vaishali, 2020. "Transitions from irrigated to dryland agriculture in the Ogallala Aquifer: Land use suitability and regional economic impacts," Agricultural Water Management, Elsevier, vol. 233(C).
    2. Pfeiffer, Lisa & Lin, C.-Y. Cynthia, 2014. "Does efficient irrigation technology lead to reduced groundwater extraction? Empirical evidence," Journal of Environmental Economics and Management, Elsevier, vol. 67(2), pages 189-208.
    3. Folhes, M.T. & Rennó, C.D. & Soares, J.V., 2009. "Remote sensing for irrigation water management in the semi-arid Northeast of Brazil," Agricultural Water Management, Elsevier, vol. 96(10), pages 1398-1408, October.
    4. Ji, Lei & Senay, Gabriel B. & Friedrichs, MacKenzie & Schauer, Matthew & Boiko, Olena, 2021. "Characterization of water use and water balance for the croplands of Kansas using satellite, climate, and irrigation data," Agricultural Water Management, Elsevier, vol. 256(C).
    5. Ifft, Jennifer & Bigelow, Daniel P. & Savage, Jeffrey, 2018. "The Impact of Irrigation Restrictions on Cropland Values in Nebraska," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 43(2), May.
    6. Daniel W. Apley & Jingyu Zhu, 2020. "Visualizing the effects of predictor variables in black box supervised learning models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(4), pages 1059-1086, September.
    7. Richard Hornbeck & Pinar Keskin, 2014. "The Historically Evolving Impact of the Ogallala Aquifer: Agricultural Adaptation to Groundwater and Drought," American Economic Journal: Applied Economics, American Economic Association, vol. 6(1), pages 190-219, January.
    8. Drysdale, Krystal M. & Hendricks, Nathan P., 2018. "Adaptation to an irrigation water restriction imposed through local governance," Journal of Environmental Economics and Management, Elsevier, vol. 91(C), pages 150-165.
    9. Senay, G. B. & Kagone, S. & Velpuri, Naga M., 2020. "Operational global actual evapotranspiration: development, evaluation, and dissemination," Papers published in Journals (Open Access), International Water Management Institute, pages 1-20(7):191.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sampson, Gabriel S. & Hendricks, Nathan P. & Taylor, Mykel R., 2019. "Land market valuation of groundwater," Resource and Energy Economics, Elsevier, vol. 58(C).
    2. Dietrich Earnhart & Nathan P. Hendricks, 2023. "Adapting to water restrictions: Intensive versus extensive adaptation over time differentiated by water right seniority," American Journal of Agricultural Economics, John Wiley & Sons, vol. 105(5), pages 1458-1490, October.
    3. Ellen M. Bruno & Nick Hagerty & Arthur R. Wardle, 2022. "The Political Economy of Groundwater Management: Descriptive Evidence from California," NBER Chapters, in: American Agriculture, Water Resources, and Climate Change, pages 343-365, National Bureau of Economic Research, Inc.
    4. Melkani, Aakanksha & Mieno, Taro & Hrozencik, Robert A. & Rimsaite, Renata & Brozovic, Nick & Kakimoto, Shunkei, 2023. "Economic Impact of Groundwater Regulation in Nebraska: A Hedonic Price Analysis," 2023 Annual Meeting, July 23-25, Washington D.C. 335606, Agricultural and Applied Economics Association.
    5. Lee, Juhee & Hendricks, Nathan, 2022. "Irrigation Decisions in Response to Groundwater Salinity in Kansas," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 47(3), September.
    6. Hrozencik, Aaron & Aillery, Marcel, 2021. "Trends in U.S. Irrigated Agriculture: Increasing Resilience Under Water Supply Scarcity," Economic Information Bulletin 327359, United States Department of Agriculture, Economic Research Service.
    7. Suarez, Federico & Fulginiti, Lilyan & Perrin, Richard, 2015. "The Value of Water in Agriculture: The U.S. High Plains Aquifer," 2015 Conference, August 9-14, 2015, Milan, Italy 211644, International Association of Agricultural Economists.
    8. Hrozencik, Aaron & Aillery, Marcel, 2021. "Trends in U.S. Irrigated Agriculture: Increasing Resilience Under Water Supply Scarcity," USDA Miscellaneous 316792, United States Department of Agriculture.
    9. Jeong, Dawoon & Sesmero, Juan Pablo, 2021. "Do changing weather patterns warrant more flexibility in cap-and-trade policy for irrigation water conservation? A case study in Mexico," 2021 Annual Meeting, August 1-3, Austin, Texas 314081, Agricultural and Applied Economics Association.
    10. Sampson, Gabriel S. & Al-Sudani, Amer & Bergtold, Jason, 2021. "Local irrigation response to ethanol expansion in the High Plains Aquifer," Resource and Energy Economics, Elsevier, vol. 66(C).
    11. Bertone Oehninger, Ernst & Lin Lawell, C.-Y. Cynthia & Sanchirico, James & Springborn, Michael, 2016. "The effects of climate change on groundwater extraction for agriculture and land-use change," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 235724, Agricultural and Applied Economics Association.
    12. Jie Zhu & Xiangyang Zhou & Jin Guo, 2023. "Sustainability of Agriculture: A Study of Digital Groundwater Supervision," Sustainability, MDPI, vol. 15(6), pages 1-15, March.
    13. Eric C. Edwards & Todd Guilfoos, 2021. "The Economics of Groundwater Governance Institutions across the Globe," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 43(4), pages 1571-1594, December.
    14. Wang, Tong & Park, Seong & Jin, Hailong, 2016. "Will Farmers Save Water? A Theoretical Analysis of Groundwater Conservation Policies for Ogallala Aquifer," 2016 Annual Meeting, February 6-9, 2016, San Antonio, Texas 229904, Southern Agricultural Economics Association.
    15. Bruno, Ellen Marie & Hagerty, Nick, 2023. "Anticipatory Effects of Regulation in Open Access," Department of Agricultural & Resource Economics, UC Berkeley, Working Paper Series qt58n467v5, Department of Agricultural & Resource Economics, UC Berkeley.
    16. Jarrett, Uchechukwu & Miller, Steve & Mohtadi, Hamid, 2023. "Dry spells and global crop production: A multi-stressor and multi-timescale analysis," Ecological Economics, Elsevier, vol. 203(C).
    17. Schoengold, Karina & Brozovic, Nicholas, 2018. "The future of groundwater management in the high plains: evolving institutions, aquifers and regulations," Western Economics Forum, Western Agricultural Economics Association, vol. 16(1).
    18. Suter, Jordan F. & Rouhi Rad, Mani & Manning, Dale T. & Goemans, Chris & Sanderson, Matthew R., 2021. "Depletion, climate, and the incremental value of groundwater," Resource and Energy Economics, Elsevier, vol. 63(C).
    19. R. Aaron Hrozencik & Jordan F. Suter & Paul J. Ferraro & Nathan Hendricks, 2024. "Social comparisons and groundwater use: Evidence from Colorado and Kansas," American Journal of Agricultural Economics, John Wiley & Sons, vol. 106(2), pages 946-966, March.
    20. Daniel P. Bigelow & Todd Kuethe, 2020. "A Tale of Two Borders: Use‐Value Assessment, Land Development, and Irrigation Investment," American Journal of Agricultural Economics, John Wiley & Sons, vol. 102(5), pages 1404-1424, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:271:y:2022:i:c:s0378377422003110. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.