IDEAS home Printed from https://ideas.repec.org/a/iwt/jounls/h049657.html
   My bibliography  Save this article

Operational global actual evapotranspiration: development, evaluation, and dissemination

Author

Listed:
  • Senay, G. B.
  • Kagone, S.
  • Velpuri, Naga M.

Abstract

Satellite-based actual evapotranspiration (ETa) is becoming increasingly reliable and available for various water management and agricultural applications from water budget studies to crop performance monitoring. The Operational Simplified Surface Energy Balance (SSEBop) model is currently used by the US Geological Survey (USGS) Famine Early Warning System Network (FEWS NET) to routinely produce and post multitemporal ETa and ETa anomalies online for drought monitoring and early warning purposes. Implementation of the global SSEBop using the Aqua satellite’s Moderate Resolution Imaging Spectroradiometer (MODIS) land surface temperature and global gridded weather datasets is presented. Evaluation of the SSEBop ETa data using 12 eddy covariance (EC) flux tower sites over six continents indicated reasonable performance in capturing seasonality with a correlation coefficient up to 0.87. However, the modeled ETa seemed to show regional biases whose natures and magnitudes require a comprehensive investigation using complete water budgets and more quality-controlled EC station datasets. While the absolute magnitude of SSEBop ETa would require a one-time bias correction for use in water budget studies to address local or regional conditions, the ETa anomalies can be used without further modifications for drought monitoring. All ETa products are freely available for download from the USGS FEWS NET website.

Suggested Citation

  • Senay, G. B. & Kagone, S. & Velpuri, Naga M., 2020. "Operational global actual evapotranspiration: development, evaluation, and dissemination," Papers published in Journals (Open Access), International Water Management Institute, pages 1-20(7):191.
  • Handle: RePEc:iwt:jounls:h049657
    DOI: 10.3390/s20071915
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1424-8220/20/7/1915/pdf
    Download Restriction: no

    File URL: https://libkey.io/10.3390/s20071915?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wittwer, Glyn & Griffith, Marnie, 2011. "Modelling drought and recovery in the southern Murray-Darling basin," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 55(3), pages 1-18, September.
    2. Adam Loch & David Adamson, 2015. "Drought and the rebound effect: a Murray–Darling Basin example," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(3), pages 1429-1449, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ji, Lei & Senay, Gabriel B. & Friedrichs, MacKenzie & Schauer, Matthew & Boiko, Olena, 2021. "Characterization of water use and water balance for the croplands of Kansas using satellite, climate, and irrigation data," Agricultural Water Management, Elsevier, vol. 256(C).
    2. Zhao, Tianxing & Zhu, Yan & Ye, Ming & Yang, Jinzhong & Jia, Biao & Mao, Wei & Wu, Jingwei, 2022. "A new approach for estimating spatial-temporal phreatic evapotranspiration at a regional scale using NDVI and water table depth measurements," Agricultural Water Management, Elsevier, vol. 264(C).
    3. Filippelli, Steven K. & Sloggy, Matthew R. & Vogeler, Jody C. & Manning, Dale T. & Goemans, Christopher & Senay, Gabriel B., 2022. "Remote sensing of field-scale irrigation withdrawals in the central Ogallala aquifer region," Agricultural Water Management, Elsevier, vol. 271(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. David Adamson & Adam Loch, 2018. "Achieving environmental flows where buyback is constrained," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 62(1), pages 83-102, January.
    2. Claire Settre & Jeff Connor & Sarah Ann Wheeler, 2017. "Reviewing the Treatment of Uncertainty in Hydro-economic Modeling of the Murray–Darling Basin, Australia," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 3(03), pages 1-35, July.
    3. Glyn Wittwer & Peter Dixon, 2011. "Water trading, buybacks and drought in the Murray-Darling basin: lessons from economic modelling," Centre of Policy Studies/IMPACT Centre Working Papers g-222, Victoria University, Centre of Policy Studies/IMPACT Centre.
    4. Wittwer, Glyn, 2021. "A review of CGE modelling of irrigation developments and policies in Australia," Conference papers 333263, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    5. Kirby, Mac & Bark, Rosalind & Connor, Jeff & Qureshi, M. Ejaz & Keyworth, Scott, 2014. "Sustainable irrigation: How did irrigated agriculture in Australia's Murray–Darling Basin adapt in the Millennium Drought?," Agricultural Water Management, Elsevier, vol. 145(C), pages 154-162.
    6. Chokri Thabet, 2014. "Water Policy and Poverty Reduction in Rural Area: A Comparative Economy Wide Analysis for Morocco and Tunisia," Working Papers 860, Economic Research Forum, revised Nov 2014.
    7. Zawalińska, Katarzyna & Ciechomska, Anna & Jendrzejewski, Błażej, 2016. "Challenges for Modelling CAP 2014–2020 within CGE Model Framework," Village and Agriculture (Wieś i Rolnictwo), Polish Academy of Sciences (IRWiR PAN), Institute of Rural and Agricultural Development, vol. 4(173).
    8. Ahmad Hamidov & Ulan Kasymov & Kakhramon Djumaboev & Carsten Paul, 2022. "Rebound Effects in Irrigated Agriculture in Uzbekistan: A Stakeholder-Based Assessment," Sustainability, MDPI, vol. 14(14), pages 1-15, July.
    9. Hang Xu & Rui Yang & Jianfeng Song, 2021. "Agricultural Water Use Efficiency and Rebound Effect: A Study for China," IJERPH, MDPI, vol. 18(13), pages 1-16, July.
    10. Palomo-Hierro, Sara & Loch, Adam & Pérez-Blanco, C. Dionisio, 2022. "Improving water markets in Spain: Lesson-drawing from the Murray-Darling Basin in Australia," Agricultural Water Management, Elsevier, vol. 259(C).
    11. Aijun Guo & Rong Zhang & Xiaoyu Song & Fanglei Zhong & Daiwei Jiang & Yuan Song, 2021. "Predicting the Water Rebound Effect in China under the Shared Socioeconomic Pathways," IJERPH, MDPI, vol. 18(3), pages 1-24, February.
    12. Qing Zhou & Yali Zhang & Feng Wu, 2022. "Can Water Price Improve Water Productivity? A Water-Economic-Model-Based Study in Heihe River Basin, China," Sustainability, MDPI, vol. 14(10), pages 1-18, May.
    13. Tocados-Franco, Enrique & Berbel, Julio & Expósito, Alfonso, 2023. "Water policy implications of perennial expansion in the Guadalquivir River Basin (southern Spain)," Agricultural Water Management, Elsevier, vol. 282(C).
    14. Songjun Han & Di Xu & Zhiyong Yang, 2017. "Irrigation-Induced Changes in Evapotranspiration Demand of Awati Irrigation District, Northwest China: Weakening the Effects of Water Saving?," Sustainability, MDPI, vol. 9(9), pages 1-12, August.
    15. Onil Banerjee & Martin Cicowiez & Mark Horridge & Renato Vargas, 2016. "A Conceptual Framework for Integrated Economic-Environmental Modelling," CEDLAS, Working Papers 0202, CEDLAS, Universidad Nacional de La Plata.
    16. Xu, Hang & Song, Jianfeng, 2022. "Drivers of the irrigation water rebound effect: A case study of Hetao irrigation district in Yellow River basin, China," Agricultural Water Management, Elsevier, vol. 266(C).
    17. Wittwer, Glyn, 2015. "The TERM-H2O modeling experience in Australia," Conference papers 332657, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    18. Tristan D. Pearce & Evelyn H. Rodríguez & David Fawcett & James D. Ford, 2018. "How Is Australia Adapting to Climate Change Based on a Systematic Review?," Sustainability, MDPI, vol. 10(9), pages 1-14, September.
    19. Jaume Freire-González & Christopher A. Decker & Jim W. Hall, 2017. "A Scenario-Based Framework for Assessing the Economic Impacts of Potential Droughts," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 3(04), pages 1-27, October.
    20. Firre An Suprapto & Bambang Juanda & Ernan Rustiadi & Khursatul Munibah, 2022. "Study of Disaster Susceptibility and Economic Vulnerability to Strengthen Disaster Risk Reduction Instruments in Batu City, Indonesia," Land, MDPI, vol. 11(11), pages 1-23, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:iwt:jounls:h049657. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chandima Gunadasa (email available below). General contact details of provider: https://edirc.repec.org/data/iwmiclk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.