IDEAS home Printed from https://ideas.repec.org/a/caa/jnlswr/v19y2024i1id110-2023-swr.html
   My bibliography  Save this article

Erosion risk analysis in a changing climate

Author

Listed:
  • Jan Prachowski

    (Department of Applied and Landscape Ecology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic)

  • Jan Szturc

    (Department of Applied and Landscape Ecology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic)

  • Josef Kučera

    (Department for Land Use Planning Brno, Research Institute for Soil and Water Conservation, Brno, Czech Republic)

  • Jana Podhrázská

    (Department of Applied and Landscape Ecology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic)

Abstract

Soil is an irreplaceable natural resource, with irreplaceable ecosystem functions. One of the greatest risks of soil degradation in the Czech Republic is accelerated erosion, which causes numerous damages to soil properties with negative impacts on the environment. The climate development in recent decades and its forecasts may further intensify these processes. This article deals with the analysis of the impacts of changes in selected climatic factors on the development of erosion processes, which in the conditions of the Czech Republic are influenced mainly by the development of precipitation in the growing season and the development of the values of erosion potential of water released by snowmelt in the winter (non-growing) period. The analysis was carried out on a total area of 459.5 km2, in different morphological and climatic conditions. The impact of climate change was assessed using historical and updated values of rain erosivity and snow erosion potential factors. The results show an increase in the risk of erosive loss in the growing season for all the analysed areas, while the values of erosive loss in the non-growing period differ from each other depending on the climatic and morphological conditions of the areas under study.

Suggested Citation

  • Jan Prachowski & Jan Szturc & Josef Kučera & Jana Podhrázská, 2024. "Erosion risk analysis in a changing climate," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 19(1), pages 50-63.
  • Handle: RePEc:caa:jnlswr:v:19:y:2024:i:1:id:110-2023-swr
    DOI: 10.17221/110/2023-SWR
    as

    Download full text from publisher

    File URL: http://swr.agriculturejournals.cz/doi/10.17221/110/2023-SWR.html
    Download Restriction: free of charge

    File URL: http://swr.agriculturejournals.cz/doi/10.17221/110/2023-SWR.pdf
    Download Restriction: free of charge

    File URL: https://libkey.io/10.17221/110/2023-SWR?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bořivoj Šarapatka & Marek Bednář, 2022. "Rainfall Erosivity Impact on Sustainable Management of Agricultural Land in Changing Climate Conditions," Land, MDPI, vol. 11(4), pages 1-11, March.
    2. Richard S J Tol, 2018. "The Economic Impacts of Climate Change," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 12(1), pages 4-25.
    3. Baoyang Sun & Feipeng Ren & Wenfeng Ding & Guanhua Zhang & Jinquan Huang & Jianming Li & Lei Zhang, 2021. "Effects of freeze-thaw on soil properties and water erosion," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 16(4), pages 205-216.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Joaquín Bernal-Ramírez & Jair Ojeda-Joya & Camila Agudelo-Rivera & Felipe Clavijo-Ramírez & Carolina Durana-Ángel & Clark Granger-Castaño & Daniel Osorio-Rodríguez & Daniel Parra-Amado & José Pulido &, 2022. "Impacto macroeconómico del cambio climático en Colombia," Revista ESPE - Ensayos sobre Política Económica, Banco de la Republica de Colombia, issue 102, pages 1-62, July.
    2. Alessandro Moro, 2021. "Can capital controls promote green investments in developing countries?," Temi di discussione (Economic working papers) 1348, Bank of Italy, Economic Research and International Relations Area.
    3. Martin Henseler & Ingmar Schumacher, 2019. "The impact of weather on economic growth and its production factors," Climatic Change, Springer, vol. 154(3), pages 417-433, June.
    4. Brown, Marilyn A. & Li, Yufei & Soni, Anmol, 2020. "Are all jobs created equal? Regional employment impacts of a U.S. carbon tax," Applied Energy, Elsevier, vol. 262(C).
    5. Dinar, Ariel, 2012. "Economy-wide implications of direct and indirect policy interventions in the water sector: lessons from recent work and future research needs," Policy Research Working Paper Series 6068, The World Bank.
    6. Sassi, Maria & Cardaci, Alberto, 2013. "Impact of rainfall pattern on cereal market and food security in Sudan: Stochastic approach and CGE model," Food Policy, Elsevier, vol. 43(C), pages 321-331.
    7. L. Oosterhout & E. Koks & P. Beukering & S. Schep & T. Tiggeloven & S. Manen & M. Knaap & C. Duinmeijer & S. L. Buijs, 2023. "An Integrated Assessment of Climate Change Impacts and Implications on Bonaire," Economics of Disasters and Climate Change, Springer, vol. 7(2), pages 147-178, July.
    8. Cristina Cattaneo & Emanuele Massetti, 2019. "Does Harmful Climate Increase Or Decrease Migration? Evidence From Rural Households In Nigeria," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 10(04), pages 1-36, November.
    9. Nicolas Taconet & Aurélie Méjean & Céline Guivarch, 2020. "Influence of climate change impacts and mitigation costs on inequality between countries," Climatic Change, Springer, vol. 160(1), pages 15-34, May.
    10. Tol, Richard S.J., 2012. "A cost–benefit analysis of the EU 20/20/2020 package," Energy Policy, Elsevier, vol. 49(C), pages 288-295.
    11. Pindyck, Robert S., 2012. "Uncertain outcomes and climate change policy," Journal of Environmental Economics and Management, Elsevier, vol. 63(3), pages 289-303.
    12. Ary José A. de Souza-Jr. & Flávio Terto, 2021. "The propensity to adaptation under the new era of climate changes," Working Papers REM 2021/0167, ISEG - Lisbon School of Economics and Management, REM, Universidade de Lisboa.
    13. Helena Fornwagner & Oliver P. Hauser, 2022. "Climate Action for (My) Children," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 81(1), pages 95-130, January.
    14. Gilles Dufrénot & William Ginn & Marc Pourroy, 2023. "ENSO Climate Patterns on Global Economic Conditions," AMSE Working Papers 2308, Aix-Marseille School of Economics, France.
    15. Richard S. J. Tol, 2021. "The Economic Impact of Climate in the Long Run," World Scientific Book Chapters, in: Anil Markandya & Dirk Rübbelke (ed.), CLIMATE AND DEVELOPMENT, chapter 1, pages 3-36, World Scientific Publishing Co. Pte. Ltd..
    16. Angela Rosa & Angela Santangelo & Simona Tondelli, 2021. "Investigating the Integration of Cultural Heritage Disaster Risk Management into Urban Planning Tools. The Ravenna Case Study," Sustainability, MDPI, vol. 13(2), pages 1-24, January.
    17. Francesco Bosello & Carlo Orecchia & David A. Raitzer, 2016. "Decarbonization Pathways in Southeast Asia: New Results for Indonesia, Malaysia, Philippines, Thailand and Viet Nam," Working Papers 2016.75, Fondazione Eni Enrico Mattei.
    18. Robert S. Pindyck, 2011. "Modeling the Impact of Warming in Climate Change Economics," NBER Chapters, in: The Economics of Climate Change: Adaptations Past and Present, pages 47-71, National Bureau of Economic Research, Inc.
    19. Waldhoff, Stephanie & Anthoff, David & Rose, Steven K. & Tol, Richard S. J., 2014. "The marginal damage costs of different greenhouse gases: An application of FUND," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 8, pages 1-33.
    20. Kahn, Matthew E. & Mohaddes, Kamiar & Ng, Ryan N.C. & Pesaran, M. Hashem & Raissi, Mehdi & Yang, Jui-Chung, 2021. "Long-term macroeconomic effects of climate change: A cross-country analysis," Energy Economics, Elsevier, vol. 104(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:caa:jnlswr:v:19:y:2024:i:1:id:110-2023-swr. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ivo Andrle (email available below). General contact details of provider: https://www.cazv.cz/en/home/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.