IDEAS home Printed from https://ideas.repec.org/a/caa/jnlage/v64y2018i7id303-2016-agricecon.html
   My bibliography  Save this article

Shadow prices of greenhouse gas emissions: An application to the Czech dairy production

Author

Listed:
  • Zdenka ZAKOVA KROUPOVA
  • Lukas CECHURA

    (Department of Economics, Faculty of Economics and Management, Czech University of Life Science in Prague, Prague, Czech Republic)

  • Michaela HAVLIKOVA

    (Department of Economics, Faculty of Economics and Management, Czech University of Life Science in Prague, Prague, Czech Republic)

  • Pavlina HALOVA

    (Department of Economics, Faculty of Economics and Management, Czech University of Life Science in Prague, Prague, Czech Republic)

  • Michal MALY

    (Department of Economics, Faculty of Economics and Management, Czech University of Life Science in Prague, Prague, Czech Republic)

Abstract

The paper presents an analysis of the shadow prices of the greenhouse gas emissions in the Czech dairy production industry. There is employed the stochastic frontier multiple output distance function with two market outputs and one non-market (undesirable) output - greenhouse gas emissions - as a representation of a negative public good. The results show that shadow prices differ significantly between producers. Moreover, the price is not stable over time. Significant differences can be seen in shadow prices for the greenhouse gas emissions among the researched group of farmers with respect to the degree of intensification. Most noticeably, the higher the intensification, the higher the shadow price. However, no evidence for a significant relationship between the greenhouse gas prices and technical efficiency was found, and not even the development of the greenhouse gas prices and technical efficiency suggested any common patterns.

Suggested Citation

  • Zdenka ZAKOVA KROUPOVA & Lukas CECHURA & Michaela HAVLIKOVA & Pavlina HALOVA & Michal MALY, 2018. "Shadow prices of greenhouse gas emissions: An application to the Czech dairy production," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 64(7), pages 291-300.
  • Handle: RePEc:caa:jnlage:v:64:y:2018:i:7:id:303-2016-agricecon
    DOI: 10.17221/303/2016-AGRICECON
    as

    Download full text from publisher

    File URL: http://agricecon.agriculturejournals.cz/doi/10.17221/303/2016-AGRICECON.html
    Download Restriction: free of charge

    File URL: http://agricecon.agriculturejournals.cz/doi/10.17221/303/2016-AGRICECON.pdf
    Download Restriction: free of charge

    File URL: https://libkey.io/10.17221/303/2016-AGRICECON?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fried, Harold O. & Lovell, C. A. Knox & Schmidt, Shelton S. (ed.), 2008. "The Measurement of Productive Efficiency and Productivity Growth," OUP Catalogue, Oxford University Press, number 9780195183528.
    2. Efthymios G. Tsionas, 2002. "Stochastic frontier models with random coefficients," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(2), pages 127-147.
    3. Casey, J.W. & Holden, N.M., 2005. "Analysis of greenhouse gas emissions from the average Irish milk production system," Agricultural Systems, Elsevier, vol. 86(1), pages 97-114, October.
    4. Lukas Cechura & Aaron Grau & Heinrich Hockmann & Inna Levkovych & Zdenka Kroupova, 2017. "Catching Up or Falling Behind in European Agriculture: The Case of Milk Production," Journal of Agricultural Economics, Wiley Blackwell, vol. 68(1), pages 206-227, February.
    5. Dreze, Jean & Stern, Nicholas, 1990. "Policy reform, shadow prices, and market prices," Journal of Public Economics, Elsevier, vol. 42(1), pages 1-45, June.
    6. Bernhard Brümmer & Thomas Glauben & Geert Thijssen, 2002. "Decomposition of Productivity Growth Using Distance Functions: The Case of Dairy Farms in Three European Countries," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 84(3), pages 628-644.
    7. Rolf Färe & Shawna Grosskopf, 1998. "Shadow Pricing of Good and Bad Commodities," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 80(3), pages 584-590.
    8. Cechura, Lukas & Hockmann, Heinrich & Mala, Zdenka & Maly, Michal, 2014. "Productivity and efficiency differences between Czech and Slovak milk producers," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 17(2), pages 17-21.
    9. Jondrow, James & Knox Lovell, C. A. & Materov, Ivan S. & Schmidt, Peter, 1982. "On the estimation of technical inefficiency in the stochastic frontier production function model," Journal of Econometrics, Elsevier, vol. 19(2-3), pages 233-238, August.
    10. Timothy J. Coelli & D.S. Prasada Rao & Christopher J. O’Donnell & George E. Battese, 2005. "An Introduction to Efficiency and Productivity Analysis," Springer Books, Springer, edition 0, number 978-0-387-25895-9, December.
    11. Lee, Sang-choon & Oh, Dong-hyun & Lee, Jeong-dong, 2014. "A new approach to measuring shadow price: Reconciling engineering and economic perspectives," Energy Economics, Elsevier, vol. 46(C), pages 66-77.
    12. Zhou, P. & Zhou, X. & Fan, L.W., 2014. "On estimating shadow prices of undesirable outputs with efficiency models: A literature review," Applied Energy, Elsevier, vol. 130(C), pages 799-806.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lajos Baráth & Imre Fertő & Heinrich Hockmann, 2020. "Technological Differences, Theoretical Consistency, and Technical Efficiency: The Case of Hungarian Crop-Producing Farms," Sustainability, MDPI, vol. 12(3), pages 1-18, February.
    2. Kellermann, Magnus & Salhofer, Klaus, 2011. "Comparing productivity growth in conventional and grassland dairy farms," 2011 International Congress, August 30-September 2, 2011, Zurich, Switzerland 114763, European Association of Agricultural Economists.
    3. Barros, Carlos Pestana & Williams, Jonathan, 2013. "The random parameters stochastic frontier cost function and the effectiveness of public policy: Evidence from bank restructuring in Mexico," International Review of Financial Analysis, Elsevier, vol. 30(C), pages 98-108.
    4. Farsi, Mehdi & Filippini, Massimo, 2009. "An analysis of cost efficiency in Swiss multi-utilities," Energy Economics, Elsevier, vol. 31(2), pages 306-315, March.
    5. Mike Tsionas & Marwan Izzeldin & Arne Henningsen & Evaggelos Paravalos, 2022. "Addressing endogeneity when estimating stochastic ray production frontiers: a Bayesian approach," Empirical Economics, Springer, vol. 62(3), pages 1345-1363, March.
    6. Kamiche Zegarra, J. & Bravo-Ureta, B., 2018. "Are users of market information efficient? A stochastic production frontier model corrected by sample selection," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 275870, International Association of Agricultural Economists.
    7. Solis, Daniel & Agar, Juan & del Corral, Julio, 2015. "The impact of IFQs on the productivity of the US Gulf of Mexico Red Snapper Fishery," 2015 Annual Meeting, January 31-February 3, 2015, Atlanta, Georgia 196639, Southern Agricultural Economics Association.
    8. Orea, Luis, 2019. "The Econometric Measurement of Firms’ Efficiency," Efficiency Series Papers 2019/02, University of Oviedo, Department of Economics, Oviedo Efficiency Group (OEG).
    9. Gralka, Sabine, 2018. "Stochastic frontier analysis in higher education: A systematic review," CEPIE Working Papers 05/18, Technische Universität Dresden, Center of Public and International Economics (CEPIE).
    10. Kellermann, Magnus A., 2015. "Total Factor Productivity Decomposition and Unobserved Heterogeneity in Stochastic Frontier Models," Agricultural and Resource Economics Review, Northeastern Agricultural and Resource Economics Association, vol. 44(1), pages 1-25, April.
    11. Mai, Nhat Chi, 2015. "Efficiency of the banking system in Vietnam under financial liberalization," OSF Preprints qsf6d, Center for Open Science.
    12. Alejandro Arvelo-Martín & Juan José Díaz-Hernández & Ignacio Abásolo-Alessón, 2019. "Hospital productivity bias when not adjusting for cost heterogeneity: The case of Spain," PLOS ONE, Public Library of Science, vol. 14(6), pages 1-17, June.
    13. Goddard, John & Molyneux, Philip & Williams, Jonathan, 2014. "Dealing with cross-firm heterogeneity in bank efficiency estimates: Some evidence from Latin America," Journal of Banking & Finance, Elsevier, vol. 40(C), pages 130-142.
    14. Laureti, Tiziana & Secondi, Luca & Biggeri, Luigi, 2014. "Measuring the efficiency of teaching activities in Italian universities: An information theoretic approach," Economics of Education Review, Elsevier, vol. 42(C), pages 147-164.
    15. Donald F. Vitaliano, 2021. "Information asymmetry in fire insurance: a frontier approach," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 45(4), pages 764-773, October.
    16. Lukáš Čechura & Zdeňka Žáková Kroupová, 2021. "Technical Efficiency in the European Dairy Industry: Can We Observe Systematic Failures in the Efficiency of Input Use?," Sustainability, MDPI, vol. 13(4), pages 1-19, February.
    17. Dolšak, Janez & Hrovatin, Nevenka & Zorić, Jelena, 2022. "Estimating the efficiency in overall energy consumption: Evidence from Slovenian household-level data," Energy Economics, Elsevier, vol. 114(C).
    18. Bezat-Jarzębowska Agnieszka & Rembisz Włodzimierz, 2016. "Modelling of Efficiency Change as a Source of Economic Growth in Agriculture," Folia Oeconomica Stetinensia, Sciendo, vol. 16(1), pages 63-74, December.
    19. Wang, Xiaobing & Hockmann, Heinrich, 2012. "Technical Efficiency Under Producer’S Individual Technology: A Metafrontier Analysis," 2012 Conference, August 18-24, 2012, Foz do Iguacu, Brazil 126755, International Association of Agricultural Economists.
    20. Alvarez, Antonio & del Corral, Julio & Tauer, Loren W., 2012. "Modeling Unobserved Heterogeneity in New York Dairy Farms: One-Stage versus Two-Stage Models," Agricultural and Resource Economics Review, Cambridge University Press, vol. 41(3), pages 275-285, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:caa:jnlage:v:64:y:2018:i:7:id:303-2016-agricecon. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ivo Andrle (email available below). General contact details of provider: https://www.cazv.cz/en/home/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.