IDEAS home Printed from https://ideas.repec.org/a/bla/agecon/v45y2014i1p103-116.html
   My bibliography  Save this article

Impacts of increased bioenergy demand on global food markets: an AgMIP economic model intercomparison

Author

Listed:
  • Hermann Lotze-Campen
  • Martin Lampe
  • Page Kyle
  • Shinichiro Fujimori
  • Petr Havlik
  • Hans Meijl
  • Tomoko Hasegawa
  • Alexander Popp
  • Christoph Schmitz
  • Andrzej Tabeau
  • Hugo Valin
  • Dirk Willenbockel
  • Marshall Wise

Abstract

Integrated Assessment studies have shown that meeting ambitious greenhouse gas mitigation targets will require substantial amounts of bioenergy as part of the future energy mix. In the course of the Agricultural Model Intercomparison and Improvement Project (AgMIP), five global agro-economic models were used to analyze a future scenario with global demand for ligno-cellulosic bioenergy rising to about 100 ExaJoule in 2050. From this exercise a tentative conclusion can be drawn that ambitious climate change mitigation need not drive up global food prices much, if the extra land required for bioenergy production is accessible or if the feedstock, for example, from forests, does not directly compete for agricultural land. Agricultural price effects across models by the year 2050 from high bioenergy demand in an ambitious mitigation scenario appear to be much smaller (+5% average across models) than from direct climate impacts on crop yields in a high-emission scenario (+25% average across models). However, potential future scarcities of water and nutrients, policy-induced restrictions on agricultural land expansion, as well as potential welfare losses have not been specifically looked at in this exercise.

Suggested Citation

  • Hermann Lotze-Campen & Martin Lampe & Page Kyle & Shinichiro Fujimori & Petr Havlik & Hans Meijl & Tomoko Hasegawa & Alexander Popp & Christoph Schmitz & Andrzej Tabeau & Hugo Valin & Dirk Willenbocke, 2014. "Impacts of increased bioenergy demand on global food markets: an AgMIP economic model intercomparison," Agricultural Economics, International Association of Agricultural Economists, vol. 45(1), pages 103-116, January.
  • Handle: RePEc:bla:agecon:v:45:y:2014:i:1:p:103-116
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/agec.12092
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Toshihiko Masui & Kenichi Matsumoto & Yasuaki Hijioka & Tsuguki Kinoshita & Toru Nozawa & Sawako Ishiwatari & Etsushi Kato & P. Shukla & Yoshiki Yamagata & Mikiko Kainuma, 2011. "An emission pathway for stabilization at 6 Wm −2 radiative forcing," Climatic Change, Springer, vol. 109(1), pages 59-76, November.
    2. Christoph Schmitz & Hans van Meijl & Page Kyle & Gerald C. Nelson & Shinichiro Fujimori & Angelo Gurgel & Petr Havlik & Edwina Heyhoe & Daniel Mason d'Croz & Alexander Popp & Ron Sands & Andrzej Tabea, 2014. "Land-use change trajectories up to 2050: insights from a global agro-economic model comparison," Agricultural Economics, International Association of Agricultural Economists, vol. 45(1), pages 69-84, January.
    3. Crago, Christine L. & Khanna, Madhu & Barton, Jason & Giuliani, Eduardo & Amaral, Weber, 2010. "Competitiveness of Brazilian sugarcane ethanol compared to US corn ethanol," Energy Policy, Elsevier, vol. 38(11), pages 7404-7415, November.
    4. Babcock, Bruce A. & Marette, Stéphan & Tréguer, David, 2011. "Opportunity for profitable investments in cellulosic biofuels," Energy Policy, Elsevier, vol. 39(2), pages 714-719, February.
    5. Hermann Lotze-Campen & Christoph Müller & Alberte Bondeau & Stefanie Rost & Alexander Popp & Wolfgang Lucht, 2008. "Global food demand, productivity growth, and the scarcity of land and water resources: a spatially explicit mathematical programming approach," Agricultural Economics, International Association of Agricultural Economists, vol. 39(3), pages 325-338, November.
    6. Sherman Robinson & Hans Meijl & Dirk Willenbockel & Hugo Valin & Shinichiro Fujimori & Toshihiko Masui & Ron Sands & Marshall Wise & Katherine Calvin & Petr Havlik & Daniel Mason d'Croz & Andrzej Tabe, 2014. "Comparing supply-side specifications in models of global agriculture and the food system," Agricultural Economics, International Association of Agricultural Economists, vol. 45(1), pages 21-35, January.
    7. Brigitte Knopf, Ottmar Edenhofer, Christian Flachsland, Marcel T. J. Kok, Hermann Lotze-Campen, Gunnar Luderer, Alexander Popp, Detlef P. van Vuuren, 2010. "Managing the Low-Carbon Transition - From Model Results to Policies," The Energy Journal, International Association for Energy Economics, vol. 0(Special I).
    8. Gunnar Luderer & Valentina Bosetti & Michael Jakob & Marian Leimbach & Jan Steckel & Henri Waisman & Ottmar Edenhofer, 2012. "The economics of decarbonizing the energy system—results and insights from the RECIPE model intercomparison," Climatic Change, Springer, vol. 114(1), pages 9-37, September.
    9. Martin Lampe & Dirk Willenbockel & Helal Ahammad & Elodie Blanc & Yongxia Cai & Katherine Calvin & Shinichiro Fujimori & Tomoko Hasegawa & Petr Havlik & Edwina Heyhoe & Page Kyle & Hermann Lotze-Campe, 2014. "Why do global long-term scenarios for agriculture differ? An overview of the AgMIP Global Economic Model Intercomparison," Agricultural Economics, International Association of Agricultural Economists, vol. 45(1), pages 3-20, January.
    10. Martin Banse & Hans van Meijl & Andrzej Tabeau & Geert Woltjer, 2008. "Will EU biofuel policies affect global agricultural markets?," European Review of Agricultural Economics, Foundation for the European Review of Agricultural Economics, vol. 35(2), pages 117-141, June.
    11. Petr Havlík & Hugo Valin & Aline Mosnier & Michael Obersteiner & Justin S. Baker & Mario Herrero & Mariana C. Rufino & Erwin Schmid, 2013. "Crop Productivity and the Global Livestock Sector: Implications for Land Use Change and Greenhouse Gas Emissions," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 95(2), pages 442-448.
    12. Harris, John R & Todaro, Michael P, 1970. "Migration, Unemployment & Development: A Two-Sector Analysis," American Economic Review, American Economic Association, vol. 60(1), pages 126-142, March.
    13. Gerald C. Nelson & Dominique Mensbrugghe & Helal Ahammad & Elodie Blanc & Katherine Calvin & Tomoko Hasegawa & Petr Havlik & Edwina Heyhoe & Page Kyle & Hermann Lotze-Campen & Martin Lampe & Daniel Ma, 2014. "Agriculture and climate change in global scenarios: why don't the models agree," Agricultural Economics, International Association of Agricultural Economists, vol. 45(1), pages 85-101, January.
    14. Bruce A. McCarl & Thomas H. Spreen, 1980. "Price Endogenous Mathematical Programming As a Tool for Sector Analysis," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 62(1), pages 87-102.
    15. Fujimori, Shinichiro & Matsuoka, Yuzuru, 2011. "Development of method for estimation of world industrial energy consumption and its application," Energy Economics, Elsevier, vol. 33(3), pages 461-473, May.
    16. Calvin, Katherine & Clarke, Leon & Krey, Volker & Blanford, Geoffrey & Jiang, Kejun & Kainuma, Mikiko & Kriegler, Elmar & Luderer, Gunnar & Shukla, P.R., 2012. "The role of Asia in mitigating climate change: Results from the Asia modeling exercise," Energy Economics, Elsevier, vol. 34(S3), pages 251-260.
    17. Detlef P. van Vuuren, Elie Bellevrat, Alban Kitous and Morna Isaac, 2010. "Bio-Energy Use and Low Stabilization Scenarios," The Energy Journal, International Association for Energy Economics, vol. 0(Special I).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. David Blandford & Katharine Hassapoyannes, 2018. "The role of agriculture in global GHG mitigation," OECD Food, Agriculture and Fisheries Papers 112, OECD Publishing.
    2. Smeets Kristkova, Zuzana & Smeets, Edward & Van Meijl, Hans, 2017. "Agricultural R&D Investments, Biofuel Policy And Food Security – A CGE Analysis," 2017 International Congress, August 28-September 1, 2017, Parma, Italy 260822, European Association of Agricultural Economists.
    3. Hans van Meijl & Petr Havlik & Hermann Lotze-Campen & Elke Stehfest & Peter Witzke & Ignacio Perez Dominguez & Benjamin Bodirsky & Michiel van Dijk & Jonathan Doelman & Thomas Fellmann & Florian Humpe, 2017. "Challenges of Global Agriculture in a Climate Change Context by 2050 (AgCLIM50)," JRC Working Papers JRC106835, Joint Research Centre (Seville site).
    4. Heinz-Peter Witzke & Pavel Ciaian & Jacques Delince, 2014. "CAPRI long-term climate change scenario analysis: The AgMIP approach," JRC Working Papers JRC85872, Joint Research Centre (Seville site).
    5. Andre Deppermann & Markus Blesl & Ole Boysen & Harald Grethe & David Bruchof, 2016. "Linkages between the energy and agricultural sectors: insights from European Union greenhouse gas mitigation scenarios," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 21(5), pages 743-759, June.
    6. Hugo Valin & Ronald D. Sands & Dominique van der Mensbrugghe & Gerald C. Nelson & Helal Ahammad & Elodie Blanc & Benjamin Bodirsky & Shinichiro Fujimori & Tomoko Hasegawa & Petr Havlik & Edwina Heyhoe, 2014. "The future of food demand: understanding differences in global economic models," Agricultural Economics, International Association of Agricultural Economists, vol. 45(1), pages 51-67, January.
    7. Havlík,Petr & Valin,Hugo Jean Pierre & Gusti,Mykola & Schmid,Erwin & Forsell,Nicklas & Herrero,Mario & Khabarov,Nikolay & Mosnier,Aline & Cantele,Matthew & Obersteiner,Michael, 2015. "Climate change impacts and mitigation in the developing world : an integrated assessment of the agriculture and forestry sectors," Policy Research Working Paper Series 7477, The World Bank.
    8. Dirk Willenbockel & Claudia Ringler & Nikos Perez & Mark Rosegrant & Tingiu Zhu & Nathanial Matthews, 2016. "Climate Policy and the Energy-Water-Food Nexus: A Model Linkage Approach," EcoMod2016 9746, EcoMod.
    9. Willenbockel, Dirk, 2014. "Reflections on the prospects for pro-poor low-carbon growth," MPRA Paper 69863, University Library of Munich, Germany.
    10. Zuzana Smeets Kristkova & Edward Smeets & Hans van Meijl, 2016. "Agricultural R&D investments, biofuel policy and food security – a CGE analysis," EcoMod2016 9966, EcoMod.
    11. Martin Lampe & Dirk Willenbockel & Helal Ahammad & Elodie Blanc & Yongxia Cai & Katherine Calvin & Shinichiro Fujimori & Tomoko Hasegawa & Petr Havlik & Edwina Heyhoe & Page Kyle & Hermann Lotze-Campe, 2014. "Why do global long-term scenarios for agriculture differ? An overview of the AgMIP Global Economic Model Intercomparison," Agricultural Economics, International Association of Agricultural Economists, vol. 45(1), pages 3-20, January.
    12. Richard S.J. Tol, 2018. "Energy and Climate," Working Paper Series 1618, Department of Economics, University of Sussex Business School.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:agecon:v:45:y:2014:i:1:p:103-116. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley Content Delivery) or (Christopher F. Baum). General contact details of provider: http://edirc.repec.org/data/iaaeeea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.