IDEAS home Printed from https://ideas.repec.org/a/bas/econst/y2023i8p177-199.html
   My bibliography  Save this article

Application of Artificial Intelligence and Machine Learning in the Conduct of Monetary Policy by Central Banks

Author

Listed:
  • Sonya Georgieva

Abstract

Over the past few years, artificial intelligence (AI) and machine learning (ML) have become increasingly important in central banks’ policy-making and monetary policy-making processes. The global financial crisis of 2008-2009, the COVID-19 pandemic, as well as various other episodes of high economic uncertainty since the turn of the millennium have adjusted central banks to a number of serious challenges and have led to the expansion of these mandates and emerging and exploiting new and extensive data. The study briefly notes on this as a big database (big data) and applications of AI/ML-based techniques that can provide support on monetary policy decisions, especially during times of uncertainty in the economy, referring to the latest research in this area. Also, concrete examples based on the creation of big data and AI/ML techniques applied in the activities of the European Central Bank and other central banks in Europe and the rest of the world are considered and analyzed. The analysis reveals that big data and AI/ML methods have demonstrated successful utility in conducting monetary policy by central banks. Although useful as a complement, these tools cannot be regarded as replacements for conventional data and methods due to issues related to statistics, the ability to interpret outcomes and ethical dilemmas.

Suggested Citation

  • Sonya Georgieva, 2023. "Application of Artificial Intelligence and Machine Learning in the Conduct of Monetary Policy by Central Banks," Economic Studies journal, Bulgarian Academy of Sciences - Economic Research Institute, issue 8, pages 177-199.
  • Handle: RePEc:bas:econst:y:2023:i:8:p:177-199
    as

    Download full text from publisher

    File URL: https://www.iki.bas.bg/Journals/EconomicStudies/2023/2023-8/10_Sonya-Georgieva.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Azqueta-Gavaldon, Andres & Hirschbühl, Dominik & Onorante, Luca & Saiz, Lorena, 2019. "Sources of economic policy uncertainty in the euro area: a machine learning approach," Economic Bulletin Boxes, European Central Bank, vol. 5.
    2. Max H. Farrell & Tengyuan Liang & Sanjog Misra, 2021. "Deep Neural Networks for Estimation and Inference," Econometrica, Econometric Society, vol. 89(1), pages 181-213, January.
    3. Sebastian Doerr & Leonardo Gambacorta & José María Serena Garralda, 2021. "Big data and machine learning in central banking," BIS Working Papers 930, Bank for International Settlements.
    4. Eleni Kalamara & Arthur Turrell & Chris Redl & George Kapetanios & Sujit Kapadia, 2022. "Making text count: Economic forecasting using newspaper text," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 896-919, August.
    5. Chakraborty, Chiranjit & Joseph, Andreas, 2017. "Machine learning at central banks," Bank of England working papers 674, Bank of England.
    6. Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020. "Empirical Asset Pricing via Machine Learning," Review of Finance, European Finance Association, vol. 33(5), pages 2223-2273.
    7. Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020. "Empirical Asset Pricing via Machine Learning," The Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2223-2273.
    8. Sendhil Mullainathan & Jann Spiess, 2017. "Machine Learning: An Applied Econometric Approach," Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 87-106, Spring.
    9. Leif Anders Thorsrud, 2020. "Words are the New Numbers: A Newsy Coincident Index of the Business Cycle," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(2), pages 393-409, April.
    10. Scott R. Baker & Nicholas Bloom & Steven J. Davis, 2016. "Measuring Economic Policy Uncertainty," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 131(4), pages 1593-1636.
    11. Cai, Jian & Eidam, Frederik & Saunders, Anthony & Steffen, Sascha, 2018. "Syndication, interconnectedness, and systemic risk," Journal of Financial Stability, Elsevier, vol. 34(C), pages 105-120.
    12. Jeremy Fouliard & Michael Howell & Hélène Rey & Vania Stavrakeva, 2020. "Answering the Queen: Machine Learning and Financial Crises," NBER Working Papers 28302, National Bureau of Economic Research, Inc.
    13. Ehrmann, Michael & Talmi, Jonathan, 2020. "Starting from a blank page? Semantic similarity in central bank communication and market volatility," Journal of Monetary Economics, Elsevier, vol. 111(C), pages 48-62.
    14. Meinen, Philipp & Roehe, Oke, 2017. "On measuring uncertainty and its impact on investment: Cross-country evidence from the euro area," European Economic Review, Elsevier, vol. 92(C), pages 161-179.
    15. Husted, Lucas & Rogers, John & Sun, Bo, 2020. "Monetary policy uncertainty," Journal of Monetary Economics, Elsevier, vol. 115(C), pages 20-36.
    16. Martin, Ian W.R. & Nagel, Stefan, 2022. "Market efficiency in the age of big data," Journal of Financial Economics, Elsevier, vol. 145(1), pages 154-177.
    17. Hirschbühl, Dominik & Onorante, Luca & Saiz, Lorena, 2021. "Using machine learning and big data to analyse the business cycle," Economic Bulletin Articles, European Central Bank, vol. 5.
    18. Khandani, Amir E. & Kim, Adlar J. & Lo, Andrew W., 2010. "Consumer credit-risk models via machine-learning algorithms," Journal of Banking & Finance, Elsevier, vol. 34(11), pages 2767-2787, November.
    19. Born, Benjamin & Pfeifer, Johannes, 2014. "Policy risk and the business cycle," Journal of Monetary Economics, Elsevier, vol. 68(C), pages 68-85.
    20. Andrew Haldane & Michael McMahon, 2018. "Central Bank Communications and the General Public," AEA Papers and Proceedings, American Economic Association, vol. 108, pages 578-583, May.
    21. Daniel J. Lewis & Karel Mertens & James H. Stock & Mihir Trivedi, 2022. "Measuring real activity using a weekly economic index," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(4), pages 667-687, June.
    22. Lang, Jan Hannes & Peltonen, Tuomas A. & Sarlin, Peter, 2018. "A framework for early-warning modeling with an application to banks," Working Paper Series 2182, European Central Bank.
    23. Ricardo Correa & Keshav Garud & Juan M. Londono & Nathan Mislang, 2017. "Constructing a Dictionary for Financial Stability," IFDP Notes 2017-06-28, Board of Governors of the Federal Reserve System (U.S.).
    24. Huseyin Gulen & Mihai Ion, 2016. "Editor's Choice Policy Uncertainty and Corporate Investment," The Review of Financial Studies, Society for Financial Studies, vol. 29(3), pages 523-564.
    25. Larsen, Vegard H. & Thorsrud, Leif A., 2019. "The value of news for economic developments," Journal of Econometrics, Elsevier, vol. 210(1), pages 203-218.
    26. Jean-Marc Israel & Bruno Tissot, 2021. "Incorporating micro data into macro policy decision-making," IFC Bulletins chapters, in: Bank for International Settlements (ed.), Micro data for the macro world, volume 53, Bank for International Settlements.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Martin Baumgaertner & Johannes Zahner, 2021. "Whatever it takes to understand a central banker - Embedding their words using neural networks," MAGKS Papers on Economics 202130, Philipps-Universität Marburg, Faculty of Business Administration and Economics, Department of Economics (Volkswirtschaftliche Abteilung).
    2. Pan, Zhiyuan & Zhong, Hao & Wang, Yudong & Huang, Juan, 2024. "Forecasting oil futures returns with news," Energy Economics, Elsevier, vol. 134(C).
    3. Hoang, Daniel & Wiegratz, Kevin, 2022. "Machine learning methods in finance: Recent applications and prospects," Working Paper Series in Economics 158, Karlsruhe Institute of Technology (KIT), Department of Economics and Management.
    4. Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2022. "How is machine learning useful for macroeconomic forecasting?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 920-964, August.
    5. Tobias Götze & Marc Gürtler & Eileen Witowski, 2020. "Improving CAT bond pricing models via machine learning," Journal of Asset Management, Palgrave Macmillan, vol. 21(5), pages 428-446, September.
    6. Tosapol Apaitan & Pongsak Luangaram & Pym Manopimoke, 2022. "Uncertainty in an emerging market economy: evidence from Thailand," Empirical Economics, Springer, vol. 62(3), pages 933-989, March.
    7. Luo, Qin & Bu, Jinfeng & Xu, Weiju & Huang, Dengshi, 2023. "Stock market volatility prediction: Evidence from a new bagging model," International Review of Economics & Finance, Elsevier, vol. 87(C), pages 445-456.
    8. Stolbov, Mikhail & Shchepeleva, Maria & Karminsky, Alexander, 2022. "When central bank research meets Google search: A sentiment index of global financial stress," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 81(C).
    9. Paul Geertsema & Helen Lu, 2023. "Relative Valuation with Machine Learning," Journal of Accounting Research, Wiley Blackwell, vol. 61(1), pages 329-376, March.
    10. Pan, Shuiyang & Long, Suwan(Cheng) & Wang, Yiming & Xie, Ying, 2023. "Nonlinear asset pricing in Chinese stock market: A deep learning approach," International Review of Financial Analysis, Elsevier, vol. 87(C).
    11. Saiz, Lorena & Ashwin, Julian & Kalamara, Eleni, 2021. "Nowcasting euro area GDP with news sentiment: a tale of two crises," Working Paper Series 2616, European Central Bank.
    12. Emanuel Kohlscheen, 2022. "Quantifying the Role of Interest Rates, the Dollar and Covid in Oil Prices," Papers 2208.14254, arXiv.org, revised Oct 2022.
    13. Danilo Cascaldi-Garcia & Cisil Sarisoy & Juan M. Londono & Bo Sun & Deepa D. Datta & Thiago Ferreira & Olesya Grishchenko & Mohammad R. Jahan-Parvar & Francesca Loria & Sai Ma & Marius Rodriguez & Ilk, 2023. "What Is Certain about Uncertainty?," Journal of Economic Literature, American Economic Association, vol. 61(2), pages 624-654, June.
    14. Sebastian Doerr & Leonardo Gambacorta & José María Serena Garralda, 2021. "Big data and machine learning in central banking," BIS Working Papers 930, Bank for International Settlements.
    15. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    16. Julian Ashwin & Eleni Kalamara & Lorena Saiz, 2024. "Nowcasting Euro area GDP with news sentiment: A tale of two crises," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(5), pages 887-905, August.
    17. Max H. Farrell & Tengyuan Liang & Sanjog Misra, 2020. "Deep Learning for Individual Heterogeneity: An Automatic Inference Framework," Papers 2010.14694, arXiv.org, revised Jul 2021.
    18. Luca Barbaglia & Sebastiano Manzan & Elisa Tosetti, 2023. "Forecasting Loan Default in Europe with Machine Learning," Journal of Financial Econometrics, Oxford University Press, vol. 21(2), pages 569-596.
    19. Díaz, Juan D. & Hansen, Erwin & Cabrera, Gabriel, 2023. "Gold risk premium estimation with machine learning methods," Journal of Commodity Markets, Elsevier, vol. 31(C).
    20. Tobias Götze & Marc Gürtler & Eileen Witowski, 0. "Improving CAT bond pricing models via machine learning," Journal of Asset Management, Palgrave Macmillan, vol. 0, pages 1-19.

    More about this item

    JEL classification:

    • E52 - Macroeconomics and Monetary Economics - - Monetary Policy, Central Banking, and the Supply of Money and Credit - - - Monetary Policy
    • E58 - Macroeconomics and Monetary Economics - - Monetary Policy, Central Banking, and the Supply of Money and Credit - - - Central Banks and Their Policies
    • D81 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Criteria for Decision-Making under Risk and Uncertainty
    • C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bas:econst:y:2023:i:8:p:177-199. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Diana Dimitrova (email available below). General contact details of provider: https://edirc.repec.org/data/ikbasbg.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.