IDEAS home Printed from https://ideas.repec.org/a/pal/assmgt/v26y2025i3d10.1057_s41260-024-00379-8.html
   My bibliography  Save this article

Superior forecasting with simple AR(1) models in a low-volatility environment: evidence from the CAT bond market

Author

Listed:
  • Marc Gürtler

    (University of Braunschweig - Institute of Technology)

  • Eileen Witowski

    (University of Braunschweig - Institute of Technology)

Abstract

In the recent literature on asset pricing, advanced machine learning methods often show better predictive quality than simple linear regression models. In this context, machine learning prediction models for bond premiums are usually based on those predictors that have proved to be particularly relevant in explanatory models. However, these models do not take into account that historical premiums of assets with particularly low premium volatilities already contain a high degree of information about future premiums. With this in mind, we consider catastrophe bonds, whose secondary market premiums exhibit low volatility, and include historical premiums in our forecasting models in addition to the usual predictors. In this way, the predictive accuracy of the linear regression is significantly increased and is comparable to that of advanced machine learning methods. Remarkably, a simple linear AR(1) model without additional predictors achieves the highest predictive performance.

Suggested Citation

  • Marc Gürtler & Eileen Witowski, 2025. "Superior forecasting with simple AR(1) models in a low-volatility environment: evidence from the CAT bond market," Journal of Asset Management, Palgrave Macmillan, vol. 26(3), pages 255-270, May.
  • Handle: RePEc:pal:assmgt:v:26:y:2025:i:3:d:10.1057_s41260-024-00379-8
    DOI: 10.1057/s41260-024-00379-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/s41260-024-00379-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1057/s41260-024-00379-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Makariou, Despoina & Barrieu, Pauline & Chen, Yining, 2021. "A random forest based approach for predicting spreads in the primary catastrophe bond market," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 140-162.
    2. Andrew W. Lo, A. Craig MacKinlay, 1988. "Stock Market Prices do not Follow Random Walks: Evidence from a Simple Specification Test," The Review of Financial Studies, Society for Financial Studies, vol. 1(1), pages 41-66.
    3. Daniele Bianchi & Matthias Büchner & Tobias Hoogteijling & Andrea Tamoni, 2021. "Corrigendum: Bond Risk Premiums with Machine Learning [Bond risk premiums with machine learning]," The Review of Financial Studies, Society for Financial Studies, vol. 34(2), pages 1090-1103.
    4. Tobias Götze & Marc Gürtler & Eileen Witowski, 2020. "Improving CAT bond pricing models via machine learning," Journal of Asset Management, Palgrave Macmillan, vol. 21(5), pages 428-446, September.
    5. Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020. "Empirical Asset Pricing via Machine Learning," Review of Finance, European Finance Association, vol. 33(5), pages 2223-2273.
    6. Wei, Yu & Liang, Chao & Li, Yan & Zhang, Xunhui & Wei, Guiwu, 2020. "Can CBOE gold and silver implied volatility help to forecast gold futures volatility in China? Evidence based on HAR and Ridge regression models," Finance Research Letters, Elsevier, vol. 35(C).
    7. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    8. Khandani, Amir E. & Kim, Adlar J. & Lo, Andrew W., 2010. "Consumer credit-risk models via machine-learning algorithms," Journal of Banking & Finance, Elsevier, vol. 34(11), pages 2767-2787, November.
    9. Arash Sioofy Khoojine & Dong Han, 2020. "Stock price network autoregressive model with application to stock market turbulence," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 93(7), pages 1-15, July.
    10. Daniele Bianchi & Matthias Büchner & Andrea Tamoni, 2021. "Bond Risk Premiums with Machine Learning [Quadratic term structure models: Theory and evidence]," The Review of Financial Studies, Society for Financial Studies, vol. 34(2), pages 1046-1089.
    11. Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020. "Empirical Asset Pricing via Machine Learning," The Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2223-2273.
    12. Frennberg, Per & Hansson, Bjorn, 1993. "Testing the random walk hypothesis on Swedish stock prices: 1919-1990," Journal of Banking & Finance, Elsevier, vol. 17(1), pages 175-191, February.
    13. Markus Herrmann & Martin Hibbeln, 2023. "Trading and liquidity in the catastrophe bond market," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 90(2), pages 283-328, June.
    14. Alexander Braun, 2016. "Pricing in the Primary Market for Cat Bonds: New Empirical Evidence," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 83(4), pages 811-847, December.
    15. Tobias Götze & Marc Gürtler & Eileen Witowski, 2023. "Forecasting accuracy of machine learning and linear regression: evidence from the secondary CAT bond market," Journal of Business Economics, Springer, vol. 93(9), pages 1629-1660, November.
    16. J. David Cummins & Mary A. Weiss, 2009. "Convergence of Insurance and Financial Markets: Hybrid and Securitized Risk‐Transfer Solutions," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 76(3), pages 493-545, September.
    17. Sendhil Mullainathan & Jann Spiess, 2017. "Machine Learning: An Applied Econometric Approach," Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 87-106, Spring.
    18. Makariou, Despoina & Barrieu, Pauline & Chen, Yining, 2021. "A random forest based approach for predicting spreads in the primary catastrophe bond market," LSE Research Online Documents on Economics 111529, London School of Economics and Political Science, LSE Library.
    19. Marc Gürtler & Martin Hibbeln & Christine Winkelvos, 2016. "The Impact of the Financial Crisis and Natural Catastrophes on CAT Bonds," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 83(3), pages 579-612, September.
    20. Harvey, David & Leybourne, Stephen & Newbold, Paul, 1997. "Testing the equality of prediction mean squared errors," International Journal of Forecasting, Elsevier, vol. 13(2), pages 281-291, June.
    21. Markus Herrmann & Martin Hibbeln, 2021. "Seasonality in catastrophe bonds and market‐implied catastrophe arrival frequencies," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 88(3), pages 785-818, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tobias Götze & Marc Gürtler & Eileen Witowski, 2023. "Forecasting accuracy of machine learning and linear regression: evidence from the secondary CAT bond market," Journal of Business Economics, Springer, vol. 93(9), pages 1629-1660, November.
    2. Tobias Götze & Marc Gürtler & Eileen Witowski, 2020. "Improving CAT bond pricing models via machine learning," Journal of Asset Management, Palgrave Macmillan, vol. 21(5), pages 428-446, September.
    3. Tobias Götze & Marc Gürtler & Eileen Witowski, 0. "Improving CAT bond pricing models via machine learning," Journal of Asset Management, Palgrave Macmillan, vol. 0, pages 1-19.
    4. Paul Geertsema & Helen Lu, 2023. "Relative Valuation with Machine Learning," Journal of Accounting Research, Wiley Blackwell, vol. 61(1), pages 329-376, March.
    5. Hoang, Daniel & Wiegratz, Kevin, 2022. "Machine learning methods in finance: Recent applications and prospects," Working Paper Series in Economics 158, Karlsruhe Institute of Technology (KIT), Department of Economics and Management.
    6. Rad, Hossein & Low, Rand Kwong Yew & Miffre, Joëlle & Faff, Robert, 2023. "The commodity risk premium and neural networks," Journal of Empirical Finance, Elsevier, vol. 74(C).
    7. Borup, Daniel & Christensen, Bent Jesper & Mühlbach, Nicolaj Søndergaard & Nielsen, Mikkel Slot, 2023. "Targeting predictors in random forest regression," International Journal of Forecasting, Elsevier, vol. 39(2), pages 841-868.
    8. Zhao, Albert Bo & Cheng, Tingting, 2022. "Stock return prediction: Stacking a variety of models," Journal of Empirical Finance, Elsevier, vol. 67(C), pages 288-317.
    9. Sergio Consoli & Luca Tiozzo Pezzoli & Elisa Tosetti, 2022. "Neural forecasting of the Italian sovereign bond market with economic news," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(S2), pages 197-224, December.
    10. Cakici, Nusret & Fieberg, Christian & Metko, Daniel & Zaremba, Adam, 2023. "Machine learning goes global: Cross-sectional return predictability in international stock markets," Journal of Economic Dynamics and Control, Elsevier, vol. 155(C).
    11. Pan, Shuiyang & Long, Suwan(Cheng) & Wang, Yiming & Xie, Ying, 2023. "Nonlinear asset pricing in Chinese stock market: A deep learning approach," International Review of Financial Analysis, Elsevier, vol. 87(C).
    12. Branco, Rafael R. & Rubesam, Alexandre & Zevallos, Mauricio, 2024. "Forecasting realized volatility: Does anything beat linear models?," Journal of Empirical Finance, Elsevier, vol. 78(C).
    13. Hanauer, Matthias X. & Kalsbach, Tobias, 2023. "Machine learning and the cross-section of emerging market stock returns," Emerging Markets Review, Elsevier, vol. 55(C).
    14. Andrew J. Patton & Yasin Simsek, 2023. "Generalized Autoregressive Score Trees and Forests," Papers 2305.18991, arXiv.org.
    15. Faria, Gonçalo & Verona, Fabio, 2024. "Enhancing forecast accuracy through frequencydomain combination: Applications to financial and economic indicators," Bank of Finland Research Discussion Papers 14/2024, Bank of Finland.
    16. Cakici, Nusret & Zaremba, Adam, 2024. "What drives stock returns across countries? Insights from machine learning models," International Review of Financial Analysis, Elsevier, vol. 96(PA).
    17. Yao, Haixiang & Xia, Shenghao & Liu, Hao, 2022. "Six-factor asset pricing and portfolio investment via deep learning: Evidence from Chinese stock market," Pacific-Basin Finance Journal, Elsevier, vol. 76(C).
    18. Luca Barbaglia & Sebastiano Manzan & Elisa Tosetti, 2023. "Forecasting Loan Default in Europe with Machine Learning," Journal of Financial Econometrics, Oxford University Press, vol. 21(2), pages 569-596.
    19. Cakici, Nusret & Shahzad, Syed Jawad Hussain & Będowska-Sójka, Barbara & Zaremba, Adam, 2024. "Machine learning and the cross-section of cryptocurrency returns," International Review of Financial Analysis, Elsevier, vol. 94(C).
    20. Shang, Dawei & Guo, Ziyu & Wang, Hui, 2024. "Enhancing digital cryptocurrency trading price prediction with an attention-based convolutional and recurrent neural network approach: The case of Ethereum," Finance Research Letters, Elsevier, vol. 67(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:assmgt:v:26:y:2025:i:3:d:10.1057_s41260-024-00379-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.