Performance of 109 Machine Learning Algorithms across Five Forecasting Tasks: Employee Behavior Modeling, Online Communication, House Pricing, IT Support and Demand Planning
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Kunze, Frederik & Wegener, Christoph & Bizer, Kilian & Spiwoks, Markus, 2017. "Forecasting European interest rates in times of financial crisis – What insights do we get from international survey forecasts?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 48(C), pages 192-205.
- Kuhn, Max, 2008. "Building Predictive Models in R Using the caret Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 28(i05).
- Ching-Wai (Jeremy) Chiu & Richard Harris & Evarist Stoja & Michael Chin, 2016. "Financial market volatility, macroeconomic fundamentals and investor sentiment," Bank of England working papers 608, Bank of England.
- Lago, Jesus & De Ridder, Fjo & De Schutter, Bart, 2018. "Forecasting spot electricity prices: Deep learning approaches and empirical comparison of traditional algorithms," Applied Energy, Elsevier, vol. 221(C), pages 386-405.
- Wolter Hassink, 2018. "How to reduce workplace absenteeism," IZA World of Labor, Institute of Labor Economics (IZA), pages 447-447, September.
- Mei, Dexiang & Liu, Jing & Ma, Feng & Chen, Wang, 2017. "Forecasting stock market volatility: Do realized skewness and kurtosis help?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 481(C), pages 153-159.
- Debnath, Kumar Biswajit & Mourshed, Monjur, 2018. "Forecasting methods in energy planning models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 297-325.
- Makridakis, Spyros & Spiliotis, Evangelos & Assimakopoulos, Vassilios, 2020. "The M4 Competition: 100,000 time series and 61 forecasting methods," International Journal of Forecasting, Elsevier, vol. 36(1), pages 54-74.
- Makridakis, Spyros & Hibon, Michele, 2000. "The M3-Competition: results, conclusions and implications," International Journal of Forecasting, Elsevier, vol. 16(4), pages 451-476.
- Hong, Tao & Pinson, Pierre & Fan, Shu & Zareipour, Hamidreza & Troccoli, Alberto & Hyndman, Rob J., 2016. "Probabilistic energy forecasting: Global Energy Forecasting Competition 2014 and beyond," International Journal of Forecasting, Elsevier, vol. 32(3), pages 896-913.
- Rob J. Hyndman, 2006. "Another Look at Forecast Accuracy Metrics for Intermittent Demand," Foresight: The International Journal of Applied Forecasting, International Institute of Forecasters, issue 4, pages 43-46, June.
- (Jeremy) Chiu, Ching-wai & Harris, Richard D.F. & Stoja, Evarist & Chin, Michael, 2018. "Financial market Volatility, macroeconomic fundamentals and investor Sentiment," Journal of Banking & Finance, Elsevier, vol. 92(C), pages 130-145.
- repec:nas:journl:v:115:y:2018:p:5409-5414 is not listed on IDEAS
- Kris Johnson Ferreira & Bin Hong Alex Lee & David Simchi-Levi, 2016. "Analytics for an Online Retailer: Demand Forecasting and Price Optimization," Manufacturing & Service Operations Management, INFORMS, vol. 18(1), pages 69-88, February.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022.
"Forecasting: theory and practice,"
International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
- Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
- Olivares, Kin G. & Challu, Cristian & Marcjasz, Grzegorz & Weron, Rafał & Dubrawski, Artur, 2023.
"Neural basis expansion analysis with exogenous variables: Forecasting electricity prices with NBEATSx,"
International Journal of Forecasting, Elsevier, vol. 39(2), pages 884-900.
- Kin G. Olivares & Cristian Challu & Grzegorz Marcjasz & Rafal Weron & Artur Dubrawski, 2021. "Neural basis expansion analysis with exogenous variables: Forecasting electricity prices with NBEATSx," WORking papers in Management Science (WORMS) WORMS/21/07, Department of Operations Research and Business Intelligence, Wroclaw University of Science and Technology.
- Katarzyna Maciejowska & Bartosz Uniejewski & Rafa{l} Weron, 2022. "Forecasting Electricity Prices," Papers 2204.11735, arXiv.org.
- Makridakis, Spyros & Hyndman, Rob J. & Petropoulos, Fotios, 2020. "Forecasting in social settings: The state of the art," International Journal of Forecasting, Elsevier, vol. 36(1), pages 15-28.
- Ulrich Gunter & Irem Önder & Egon Smeral, 2020. "Are Combined Tourism Forecasts Better at Minimizing Forecasting Errors?," Forecasting, MDPI, vol. 2(3), pages 1-19, June.
- Makridakis, Spyros & Spiliotis, Evangelos & Assimakopoulos, Vassilios, 2022. "Predicting/hypothesizing the findings of the M5 competition," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1337-1345.
- Liyang Tang, 2020. "Application of Nonlinear Autoregressive with Exogenous Input (NARX) neural network in macroeconomic forecasting, national goal setting and global competitiveness assessment," Papers 2005.08735, arXiv.org.
- Li, Rong & Tang, Guangyuan & Hong, Chen & Li, Sufang & Li, Bingting & Xiang, Shujian, 2024. "A study on economic policy uncertainty, geopolitical risk and stock market spillovers in BRICS countries," The North American Journal of Economics and Finance, Elsevier, vol. 73(C).
- Bouteska, Ahmed & Ha, Le Thanh & Bhuiyan, Faruk & Sharif, Taimur & Abedin, Mohammad Zoynul, 2024. "Contagion between investor sentiment and green bonds in China during the global uncertainties," International Review of Economics & Finance, Elsevier, vol. 93(PA), pages 469-484.
- Fotios Petropoulos & Evangelos Spiliotis, 2021. "The Wisdom of the Data: Getting the Most Out of Univariate Time Series Forecasting," Forecasting, MDPI, vol. 3(3), pages 1-20, June.
- Huber, Christoph & Huber, Jürgen & Kirchler, Michael, 2022.
"Volatility shocks and investment behavior,"
Journal of Economic Behavior & Organization, Elsevier, vol. 194(C), pages 56-70.
- Huber, Christoph & Huber, Juergen & Kirchler, Michael, 2021. "Volatility shocks and investment behavior," OSF Preprints jr4eb, Center for Open Science.
- Christoph Huber & Jürgen Huber & Michael Kirchler, 2021. "Volatility Shocks and Investment Behavior," Working Papers 2021-06, Faculty of Economics and Statistics, Universität Innsbruck.
- Marcjasz, Grzegorz & Uniejewski, Bartosz & Weron, Rafał, 2019. "On the importance of the long-term seasonal component in day-ahead electricity price forecasting with NARX neural networks," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1520-1532.
- Antonios Persakis, 2024. "The impact of climate policy uncertainty on ESG performance, carbon emission intensity and firm performance: evidence from Fortune 1000 firms," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(9), pages 24031-24081, September.
- Yang, Tianle & Zhou, Fangxing & Du, Min & Du, Qunyang & Zhou, Shirong, 2023. "Fluctuation in the global oil market, stock market volatility, and economic policy uncertainty: A study of the US and China," The Quarterly Review of Economics and Finance, Elsevier, vol. 87(C), pages 377-387.
- Huber, Christoph & Huber, Jürgen & Kirchler, Michael, 2021.
"Market shocks and professionals’ investment behavior – Evidence from the COVID-19 crash,"
Journal of Banking & Finance, Elsevier, vol. 133(C).
- Christoph Huber & Jürgen Huber & Michael Kirchler, 2020. "Market shocks and professionals' investment behavior - Evidence from the COVID-19 crash," Working Papers 2020-11, Faculty of Economics and Statistics, Universität Innsbruck.
- Huber, Christoph & Huber, Juergen & Kirchler, Michael, 2020. "Market shocks and professionals' investment behavior – Evidence from the COVID-19 crash," OSF Preprints fgxpb, Center for Open Science.
- Emilian Dobrescu, 2014. "Attempting to Quantify the Accuracy of Complex Macroeconomic Forecasts," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(4), pages 5-21, December.
- Ye, Wuyi & Guo, Ranran & Deschamps, Bruno & Jiang, Ying & Liu, Xiaoquan, 2021. "Macroeconomic forecasts and commodity futures volatility," Economic Modelling, Elsevier, vol. 94(C), pages 981-994.
- Hyndman, Rob J., 2020.
"A brief history of forecasting competitions,"
International Journal of Forecasting, Elsevier, vol. 36(1), pages 7-14.
- Rob J Hyndman, 2019. "A Brief History of Forecasting Competitions," Monash Econometrics and Business Statistics Working Papers 3/19, Monash University, Department of Econometrics and Business Statistics.
- Chun, Dohyun & Cho, Hoon & Ryu, Doojin, 2023. "Discovering the drivers of stock market volatility in a data-rich world," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 82(C).
- Andrawis, Robert R. & Atiya, Amir F. & El-Shishiny, Hisham, 2011. "Combination of long term and short term forecasts, with application to tourism demand forecasting," International Journal of Forecasting, Elsevier, vol. 27(3), pages 870-886, July.
More about this item
JEL classification:
- C44 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Operations Research; Statistical Decision Theory
- C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
- C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
- D81 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Criteria for Decision-Making under Risk and Uncertainty
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bas:econst:y:2022:i:2:p:15-43. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Diana Dimitrova (email available below). General contact details of provider: https://edirc.repec.org/data/ikbasbg.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.