IDEAS home Printed from https://ideas.repec.org/a/aen/journl/ej37-si2-bollino.html
   My bibliography  Save this article

Optimal Price Design in the Wholesale Electricity Market

Author

Listed:
  • Simona Bigerna and Carlo Andrea Bollino

Abstract

In this paper, we construct an optimal price design mechanism to determine the equilibrium in the day-ahead electricity market, specifically aimed at solving the uncomfortable conflict between conventional thermal sources (CTS) and renewable energy sources (RES). We find that the actual hourly market design is inadequate to achieve an efficient solution in the presence of a large and increasing share of RES. It is not conducive to catalyzing the correct price signal for future investments and does not take into account welfare considerations. Our proposal for a new market design is based on three main pillars. We state pro-competitive incentives to CTS participation in the market. We take into full account the opportunity cost of RES for society and propose correct price signals on the demand side through an optimal Ramsey pricing scheme. We show an empirical application to the Italian electricity market, using empirical measures of LCOE for RES and empirical estimation of heterogeneous buyers' behavior. The results show improvement in efficiency and welfare in the Italian electricity market with respect to the existing zonal market prices for suppliers and uniform price for buyers.

Suggested Citation

  • Simona Bigerna and Carlo Andrea Bollino, 2016. "Optimal Price Design in the Wholesale Electricity Market," The Energy Journal, International Association for Energy Economics, vol. 0(Bollino-M).
  • Handle: RePEc:aen:journl:ej37-si2-bollino
    as

    Download full text from publisher

    File URL: http://www.iaee.org/en/publications/ejarticle.aspx?id=2730
    Download Restriction: Access to full text is restricted to IAEE members and subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Simona Bigerna, Carlo Andrea Bollino and Paolo Polinori, 2016. "Renewable Energy and Market Power in the Italian Electricity Market," The Energy Journal, International Association for Energy Economics, vol. 0(Bollino-M).
    2. William W. Hogan, 1997. "A Market Power Model with Strategic Interaction in Electricity Networks," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 107-141.
    3. Cardell, Judith B. & Hitt, Carrie Cullen & Hogan, William W., 1997. "Market power and strategic interaction in electricity networks," Resource and Energy Economics, Elsevier, vol. 19(1-2), pages 109-137, March.
    4. Neuhoff, Karsten & Barquin, Julian & Bialek, Janusz W. & Boyd, Rodney & Dent, Chris J. & Echavarren, Francisco & Grau, Thilo & von Hirschhausen, Christian & Hobbs, Benjamin F. & Kunz, Friedrich & Nabe, 2013. "Renewable electric energy integration: Quantifying the value of design of markets for international transmission capacity," Energy Economics, Elsevier, vol. 40(C), pages 760-772.
    5. Simona Bigerna and Carlo Andrea Bollino, 2014. "Electricity Demand in Wholesale Italian Market," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    6. Holmberg, Pär & Willems, Bert, 2015. "Relaxing competition through speculation: Committing to a negative supply slope," Journal of Economic Theory, Elsevier, vol. 159(PA), pages 236-266.
    7. Bigerna, Simona & Andrea Bollino, Carlo & Polinori, Paolo, 2015. "Marginal cost and congestion in the Italian electricity market: An indirect estimation approach," Energy Policy, Elsevier, vol. 85(C), pages 445-454.
    8. Henriot, Arthur & Glachant, Jean-Michel, 2013. "Melting-pots and salad bowls: The current debate on electricity market design for integration of intermittent RES," Utilities Policy, Elsevier, vol. 27(C), pages 57-64.
    9. Richard Green, 2005. "Electricity and Markets," Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 21(1), pages 67-87, Spring.
    10. Garber, Don & Hogan, Willian W. & Ruff, Larry, 1994. "An efficient electricity market: Using a pool to support real competition," The Electricity Journal, Elsevier, vol. 7(7), pages 48-60, September.
    11. Simona Bigerna, Carlo Andrea Bollino and Paolo Polinori, 2016. "Market Power and Transmission Congestion in the Italian Electricity Market," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    12. deLlano-Paz, Fernando & Calvo-Silvosa, Anxo & Iglesias Antelo, Susana & Soares, Isabel, 2015. "The European low-carbon mix for 2030: The role of renewable energy sources in an environmentally and socially efficient approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 49-61.
    13. Diamond, P. A., 1975. "A many-person Ramsey tax rule," Journal of Public Economics, Elsevier, vol. 4(4), pages 335-342, November.
    14. Jean Michel Glachant & Arthur Henriot, 2013. "Melting-pots and salad bowls: the current debate on electricity market design for RES integration," Cambridge Working Papers in Economics 1354, Faculty of Economics, University of Cambridge.
    15. Bollino, Carlo Andrea, 1987. "Gaids: a generalised version of the almost ideal demand system," Economics Letters, Elsevier, vol. 23(2), pages 199-202.
    16. Jean-Michel Glachant, 2010. "The Achievement of the EU Electricity Internal Market through Market Coupling," RSCAS Working Papers 2010/87, European University Institute.
    17. Angelica Gianfreda, Lucia Parisio and Matteo Pelagatti, 2016. "The Impact of RES in the Italian DayAhead and Balancing Markets," The Energy Journal, International Association for Energy Economics, vol. 0(Bollino-M).
    18. Simona Bigerna and Carlo Andrea Bollino, 2015. "A System Of Hourly Demand in the Italian Electricity Market," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ioannidis, Filippos & Kosmidou, Kyriaki & Makridou, Georgia & Andriosopoulos, Kostas, 2019. "Market design of an energy exchange: The case of Greece," Energy Policy, Elsevier, vol. 133(C).
    2. Kraan, O. & Kramer, G.J. & Nikolic, I., 2018. "Investment in the future electricity system - An agent-based modelling approach," Energy, Elsevier, vol. 151(C), pages 569-580.
    3. Keppler, Jan Horst & Quemin, Simon & Saguan, Marcelo, 2022. "Why the sustainable provision of low-carbon electricity needs hybrid markets," Energy Policy, Elsevier, vol. 171(C).
    4. Bjørndal, Endre & Bjørndal, Mette Helene & Coniglio, Stefano & Körner, Marc-Fabian & Leinauer, Christina & Weibelzahl, Martin, 2023. "Energy storage operation and electricity market design: On the market power of monopolistic storage operators," European Journal of Operational Research, Elsevier, vol. 307(2), pages 887-909.
    5. Sirin, Selahattin Murat & Camadan, Ercument & Erten, Ibrahim Etem & Zhang, Alex Hongliang, 2023. "Market failure or politics? Understanding the motives behind regulatory actions to address surging electricity prices," Energy Policy, Elsevier, vol. 180(C).
    6. Angelica Gianfreda, Lucia Parisio and Matteo Pelagatti, 2016. "The Impact of RES in the Italian DayAhead and Balancing Markets," The Energy Journal, International Association for Energy Economics, vol. 0(Bollino-M).
    7. Ignacio Mauleón, 2020. "Economic Issues in Deep Low-Carbon Energy Systems," Energies, MDPI, vol. 13(16), pages 1-32, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bigerna, Simona & Bollino, Carlo Andrea, 2016. "Ramsey prices in the Italian electricity market," Energy Policy, Elsevier, vol. 88(C), pages 603-612.
    2. Concettini, Silvia & Creti, Anna & Gualdi, Stanislao, 2022. "Assessing the regional redistributive effect of renewable power production through a spot market algorithm simulator: The case of Italy," Energy Economics, Elsevier, vol. 114(C).
    3. Brown, David P. & Eckert, Andrew, 2021. "Analyzing firm behavior in restructured electricity markets: Empirical challenges with a residual demand analysis," International Journal of Industrial Organization, Elsevier, vol. 74(C).
    4. Bjørndal, Endre & Bjørndal, Mette Helene & Coniglio, Stefano & Körner, Marc-Fabian & Leinauer, Christina & Weibelzahl, Martin, 2023. "Energy storage operation and electricity market design: On the market power of monopolistic storage operators," European Journal of Operational Research, Elsevier, vol. 307(2), pages 887-909.
    5. Rowland, Christopher S. & Mjelde, James W. & Dharmasena, Senarath, 2017. "Policy implications of considering pre-commitments in U.S. aggregate energy demand system," Energy Policy, Elsevier, vol. 102(C), pages 406-413.
    6. Daron Acemoglu, Ali Kakhbod, and Asuman Ozdaglar, 2017. "Competition in Electricity Markets with Renewable Energy Sources," The Energy Journal, International Association for Energy Economics, vol. 0(KAPSARC S).
    7. Graf, Christoph & Marcantonini, Claudio, 2017. "Renewable energy and its impact on thermal generation," Energy Economics, Elsevier, vol. 66(C), pages 421-430.
    8. Ignacio Mauleón, 2020. "Economic Issues in Deep Low-Carbon Energy Systems," Energies, MDPI, vol. 13(16), pages 1-32, August.
    9. Gianfreda, Angelica & Parisio, Lucia & Pelagatti, Matteo, 2018. "A review of balancing costs in Italy before and after RES introduction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 549-563.
    10. Hu, Jing & Harmsen, Robert & Crijns-Graus, Wina & Worrell, Ernst & van den Broek, Machteld, 2018. "Identifying barriers to large-scale integration of variable renewable electricity into the electricity market: A literature review of market design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2181-2195.
    11. Glachant, Jean-Michel, 2016. "Tacking stock of the EU “Power Target Model”… and steering its future course," Energy Policy, Elsevier, vol. 96(C), pages 673-679.
    12. James W. Mjelde & Kannika Duangnate, 2023. "Overview of Committed Quantities in Commodity Demand Analysis with a Focus on Energy," Energies, MDPI, vol. 16(11), pages 1-17, May.
    13. Coester, Andreas & Hofkes, Marjan W. & Papyrakis, Elissaios, 2018. "An optimal mix of conventional power systems in the presence of renewable energy: A new design for the German electricity market," Energy Policy, Elsevier, vol. 116(C), pages 312-322.
    14. de Menezes, Lilian M. & Houllier, Melanie A., 2015. "Germany's nuclear power plant closures and the integration of electricity markets in Europe," Energy Policy, Elsevier, vol. 85(C), pages 357-368.
    15. Bianco, Vincenzo & Driha, Oana M. & Sevilla-Jiménez, Martín, 2019. "Effects of renewables deployment in the Spanish electricity generation sector," Utilities Policy, Elsevier, vol. 56(C), pages 72-81.
    16. Carlo Andrea Bollino & Maria Chiara D’Errico, 2022. "Electricity Demand Elasticity, Mobility, and COVID-19 Contagion Nexus in the Italian Day-Ahead Electricity Market," Energies, MDPI, vol. 15(20), pages 1-26, October.
    17. Rancilio, G. & Rossi, A. & Falabretti, D. & Galliani, A. & Merlo, M., 2022. "Ancillary services markets in europe: Evolution and regulatory trade-offs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    18. Yao, Jian & Oren, Shmuel S. & Adler, Ilan, 2007. "Two-settlement electricity markets with price caps and Cournot generation firms," European Journal of Operational Research, Elsevier, vol. 181(3), pages 1279-1296, September.
    19. Simona Bigerna & Carlo Andrea Bollino & Maria Chiara D’Errico & Paolo Polinori, 2023. "A new design for market power monitoring in the electricity market. A simulation for Italy," Economia Politica: Journal of Analytical and Institutional Economics, Springer;Fondazione Edison, vol. 40(1), pages 285-317, April.
    20. Bert Willems & Guido Pepermans, 2003. "Regulating transmission in a spatial oligopoly: a numerical illustration for Belgium," Energy, Transport and Environment Working Papers Series ete0314, KU Leuven, Department of Economics - Research Group Energy, Transport and Environment.

    More about this item

    JEL classification:

    • F0 - International Economics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aen:journl:ej37-si2-bollino. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: David Williams (email available below). General contact details of provider: https://edirc.repec.org/data/iaeeeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.