Advanced Search
MyIDEAS: Login to save this paper or follow this series

Forecasting Financial and Macroeconomic Variables Using Data Reduction Methods: New Empirical Evidence

Contents:

Author Info

  • Huyn Hak Kim

    ()
    (Rutgers University)

  • Norman R. Swanson

    ()
    (Rutgers University)

Abstract

In this paper, we empirically assess the predictive accuracy of a large group of models based on the use of principle components and other shrinkage methods, including Bayesian model averaging and various bagging, boosting, LASSO and related methods Our results suggest that model averaging does not dominate other well designed prediction model specification methods, and that using a combination of factor and other shrinkage methods often yields superior predictions. For example, when using recursive estimation windows, which dominate other �windowing" approaches in our experiments, prediction models constructed using pure principal component type models combined with shrinkage methods yield mean square forecast error �best� models around 70% of the time, when used to predict 11 key macroeconomic indicators at various forecast horizons. Baseline linear models (which �win�around 5% of the time) and model averaging methods (which win around 25% of the time) fare substantially worse than our sophisticated nonlinear models. Ancillary findings based on our forecasting experiments underscore the advantages of using recursive estimation strategies, and provide new evidence of the usefulness of yield and yield-spread variables in nonlinear prediction specification.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: ftp://snde.rutgers.edu/Rutgers/wp/2011-19.pdf
Download Restriction: no

Bibliographic Info

Paper provided by Rutgers University, Department of Economics in its series Departmental Working Papers with number 201119.

as in new window
Length: 20 pages
Date of creation: 15 May 2011
Date of revision:
Handle: RePEc:rut:rutres:201119

Contact details of provider:
Postal: New Jersey Hall - 75 Hamilton Street, New Brunswick, NJ 08901-1248
Phone: (732) 932-7482
Fax: (732) 932-7416
Web page: http://snde.rutgers.edu/Rutgers/wp/rutgers-wplist.html
More information through EDIRC

Related research

Keywords: prediction; bagging; boosting; Bayesian model averaging; ridge regression; least angle regression; elastic net and non-negative garotte;

Other versions of this item:

Find related papers by JEL classification:

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Mario Forni & Marc Hallin & Marco Lippi & Lucrezia Reichlin, 2005. "The generalised dynamic factor model: one sided estimation and forecasting," ULB Institutional Repository 2013/10129, ULB -- Universite Libre de Bruxelles.
  2. Carmen Fernandez & Eduardo Ley & Mark F. J. Steel, 2001. "Model uncertainty in cross-country growth regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., John Wiley & Sons, Ltd., vol. 16(5), pages 563-576.
  3. Boivin, Jean & Ng, Serena, 2005. "Understanding and Comparing Factor-Based Forecasts," MPRA Paper 836, University Library of Munich, Germany.
  4. Pesaran, M. Hashem & Pick, Andreas & Timmermann, Allan, 2011. "Variable selection, estimation and inference for multi-period forecasting problems," Journal of Econometrics, Elsevier, vol. 164(1), pages 173-187, September.
  5. Nii Ayi Armah & Norman R. Swanson, 2008. "Seeing inside the black box: Using diffusion index methodology to construct factor proxies in large scale macroeconomic time series environments," Working Papers 08-25, Federal Reserve Bank of Philadelphia.
  6. Clemen, Robert T., 1989. "Combining forecasts: A review and annotated bibliography," International Journal of Forecasting, Elsevier, vol. 5(4), pages 559-583.
  7. Jushan Bai & Serena Ng, 2004. "Evaluating Latent and Observed Factors in Macroeconomics and Financ," Econometrics, EconWPA 0408007, EconWPA.
  8. Marco Aiolfi & Carlos Capistrán & Allan Timmermann, 2010. "Forecast Combinations," Working Papers 2010-04, Banco de México.
  9. Pesaran, M. Hashem & Timmermann, Allan, 2007. "Selection of estimation window in the presence of breaks," Journal of Econometrics, Elsevier, vol. 137(1), pages 134-161, March.
  10. Connor, Gregory & Korajczyk, Robert A., 1986. "Performance measurement with the arbitrage pricing theory : A new framework for analysis," Journal of Financial Economics, Elsevier, vol. 15(3), pages 373-394, March.
  11. Gary Koop & Simon Potter, 2004. "Forecasting in dynamic factor models using Bayesian model averaging," Econometrics Journal, Royal Economic Society, vol. 7(2), pages 550-565, December.
  12. Zou, Hui, 2006. "The Adaptive Lasso and Its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, American Statistical Association, vol. 101, pages 1418-1429, December.
  13. Jushan Bai & Serena Ng, 2006. "Confidence Intervals for Diffusion Index Forecasts and Inference for Factor-Augmented Regressions," Econometrica, Econometric Society, Econometric Society, vol. 74(4), pages 1133-1150, 07.
  14. Boivin, Jean & Ng, Serena, 2006. "Are more data always better for factor analysis?," Journal of Econometrics, Elsevier, vol. 132(1), pages 169-194, May.
  15. Norman Swanson & Valentina Corradi, 2006. "Nonparametric Bootstrap Procedures for Predictive Inference Based on Recursive Estimation Schemes," Departmental Working Papers, Rutgers University, Department of Economics 200618, Rutgers University, Department of Economics.
  16. Francis X. Diebold & Robert S. Mariano, 1994. "Comparing Predictive Accuracy," NBER Technical Working Papers 0169, National Bureau of Economic Research, Inc.
  17. Halbert White, 2000. "A Reality Check for Data Snooping," Econometrica, Econometric Society, Econometric Society, vol. 68(5), pages 1097-1126, September.
  18. Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
  19. Connor, Gregory & Korajczyk, Robert A, 1993. " A Test for the Number of Factors in an Approximate Factor Model," Journal of Finance, American Finance Association, vol. 48(4), pages 1263-91, September.
  20. Stock, James H. & Watson, Mark W., 2006. "Forecasting with Many Predictors," Handbook of Economic Forecasting, Elsevier, Elsevier.
  21. Carmen Fernandez & Eduardo Ley & Mark F.J. Steel, 1998. "Benchmark Priors for Bayesian Model Averaging," Econometrics, EconWPA 9804001, EconWPA, revised 31 Jul 1999.
  22. Jonathan H. Wright, 2009. "Forecasting US inflation by Bayesian model averaging," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(2), pages 131-144.
  23. Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320.
  24. Jushan Bai & Serena Ng, 2009. "Boosting diffusion indices," Journal of Applied Econometrics, John Wiley & Sons, Ltd., John Wiley & Sons, Ltd., vol. 24(4), pages 607-629.
  25. Stock, James H. & Watson, Mark W., 1999. "Forecasting inflation," Journal of Monetary Economics, Elsevier, vol. 44(2), pages 293-335, October.
  26. Francis X. Diebold & Jose A. Lopez, 1996. "Forecast Evaluation and Combination," NBER Technical Working Papers 0192, National Bureau of Economic Research, Inc.
  27. Jushan Bai & Serena Ng, 2000. "Determining the Number of Factors in Approximate Factor Models," Boston College Working Papers in Economics 440, Boston College Department of Economics.
  28. Bai, Jushan & Ng, Serena, 2008. "Forecasting economic time series using targeted predictors," Journal of Econometrics, Elsevier, vol. 146(2), pages 304-317, October.
  29. Buhlmann P. & Yu B., 2003. "Boosting With the L2 Loss: Regression and Classification," Journal of the American Statistical Association, American Statistical Association, American Statistical Association, vol. 98, pages 324-339, January.
  30. Inoue, Atsushi & Kilian, Lutz, 2005. "How Useful is Bagging in Forecasting Economic Time Series? A Case Study of US CPI Inflation," CEPR Discussion Papers 5304, C.E.P.R. Discussion Papers.
  31. Wright, Jonathan H., 2008. "Bayesian Model Averaging and exchange rate forecasts," Journal of Econometrics, Elsevier, vol. 146(2), pages 329-341, October.
  32. James H. Stock & Mark W. Watson, 2012. "Generalized Shrinkage Methods for Forecasting Using Many Predictors," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(4), pages 481-493, June.
  33. Stock, James H & Watson, Mark W, 2002. "Macroeconomic Forecasting Using Diffusion Indexes," Journal of Business & Economic Statistics, American Statistical Association, American Statistical Association, vol. 20(2), pages 147-62, April.
  34. Chow, Gregory C & Lin, An-loh, 1971. "Best Linear Unbiased Interpolation, Distribution, and Extrapolation of Time Series by Related Series," The Review of Economics and Statistics, MIT Press, vol. 53(4), pages 372-75, November.
  35. James H. Stock & Mark W. Watson, 2005. "Implications of Dynamic Factor Models for VAR Analysis," NBER Working Papers 11467, National Bureau of Economic Research, Inc.
  36. Mark W. Watson & James H. Stock, 2004. "Combination forecasts of output growth in a seven-country data set," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(6), pages 405-430.
  37. Connor, Gregory & Korajczyk, Robert A., 1988. "Risk and return in an equilibrium APT : Application of a new test methodology," Journal of Financial Economics, Elsevier, vol. 21(2), pages 255-289, September.
  38. Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768.
  39. Ming Yuan & Yi Lin, 2007. "On the non-negative garrotte estimator," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(2), pages 143-161.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Jiahan Li & Ilias Tsiakas & Wei Wang, 2014. "Predicting Exchange Rates Out of Sample: Can Economic Fundamentals Beat the Random Walk?," Working Paper Series, The Rimini Centre for Economic Analysis 05_14, The Rimini Centre for Economic Analysis.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:rut:rutres:201119. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ().

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.