Advanced Search
MyIDEAS: Login to save this paper or follow this series

How Useful is Bagging in Forecasting Economic Time Series? A Case Study of US CPI Inflation

Contents:

Author Info

  • Inoue, Atsushi
  • Kilian, Lutz

Abstract

This paper explores the usefulness of bagging methods in forecasting economic time series from linear multiple regression models. We focus on the widely studied question of whether the inclusion of indicators of real economic activity lowers the prediction mean-squared error of forecast models of US consumer price inflation. We study bagging methods for linear regression models with correlated regressors and for factor models. We compare the accuracy of simulated out-of-sample forecasts of inflation based on these bagging methods to that of alternative forecast methods, including factor model forecasts, shrinkage estimator forecasts, combination forecasts and Bayesian model averaging. We find that bagging methods in this application are almost as accurate or more accurate than the best alternatives. Our empirical analysis demonstrates that large reductions in the prediction mean squared error are possible relative to existing methods, a result that is also suggested by the asymptotic analysis of some stylized linear multiple regression examples.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.cepr.org/pubs/dps/DP5304.asp
Download Restriction: CEPR Discussion Papers are free to download for our researchers, subscribers and members. If you fall into one of these categories but have trouble downloading our papers, please contact us at subscribers@cepr.org

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Bibliographic Info

Paper provided by C.E.P.R. Discussion Papers in its series CEPR Discussion Papers with number 5304.

as in new window
Length:
Date of creation: Oct 2005
Date of revision:
Handle: RePEc:cpr:ceprdp:5304

Contact details of provider:
Postal: Centre for Economic Policy Research, 77 Bastwick Street, London EC1V 3PZ.
Phone: 44 - 20 - 7183 8801
Fax: 44 - 20 - 7183 8820

Order Information:
Email:

Related research

Keywords: Bayesian model averaging; bootstrap aggregation; factor models; forecast combination; forecast model selection; pre-testing; shrinkage estimation;

Find related papers by JEL classification:

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Stephen G. Cecchetti & Rita S. Chu & Charles Steindel, 2000. "The unreliability of inflation indicators," Current Issues in Economics and Finance, Federal Reserve Bank of New York, vol. 6(Apr).
  2. Mario Forni & Marc Hallin & Marco Lippi & Lucrezia Reichlin, 2000. "The Generalized Dynamic-Factor Model: Identification And Estimation," The Review of Economics and Statistics, MIT Press, vol. 82(4), pages 540-554, November.
  3. Goncalves, Silvia & White, Halbert, 2002. "Maximum Likelihood and the Bootstrap for Nonlinear Dynamic Models," University of California at San Diego, Economics Working Paper Series qt8hx21540, Department of Economics, UC San Diego.
  4. Jonathan H. Wright, 2003. "Bayesian Model Averaging and exchange rate forecasts," International Finance Discussion Papers 779, Board of Governors of the Federal Reserve System (U.S.).
  5. Inoue, Atsushi & Kilian, Lutz, 2006. "On the selection of forecasting models," Journal of Econometrics, Elsevier, vol. 130(2), pages 273-306, February.
  6. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Publishing House "SINERGIA PRESS", vol. 33(1), pages 125-132.
  7. Gernot Doppelhofer & Ronald I. Miller & Xavier Sala-i-Martin, 2000. "Determinants of Long-Term Growth: A Bayesian Averaging of Classical Estimates (BACE) Approach," NBER Working Papers 7750, National Bureau of Economic Research, Inc.
  8. Mario Forni & Marc Hallin & Marco Lippi & Lucrezia Reichlin, 2003. "The Generalized Dynamic Factor Model. One-Sided Estimation and Forecasting," LEM Papers Series 2003/13, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
  9. GONÇALVES, Silvia & KILIAN, Lutz, 2003. "Bootstrapping Autoregressions with Conditional Heteroskedasticity of Unknown Form," Cahiers de recherche 2003-01, Universite de Montreal, Departement de sciences economiques.
  10. Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia, 2002. "Do Financial Variables Help Forecasting Inflation and Real Activity in the Euro Area?," CEPR Discussion Papers 3146, C.E.P.R. Discussion Papers.
  11. Hall, Peter & Horowitz, Joel L, 1996. "Bootstrap Critical Values for Tests Based on Generalized-Method-of-Moments Estimators," Econometrica, Econometric Society, vol. 64(4), pages 891-916, July.
  12. Thomson, Michael & Schmidt, Peter, 1982. "A Note on the Comparison of the Mean Square Error of Inequality Constrained Least Squares and Other Related Estimators," The Review of Economics and Statistics, MIT Press, vol. 64(1), pages 174-76, February.
  13. West, Kenneth D., 1997. "Another heteroskedasticity- and autocorrelation-consistent covariance matrix estimator," Journal of Econometrics, Elsevier, vol. 76(1-2), pages 171-191.
  14. Bernanke, Ben S. & Boivin, Jean, 2003. "Monetary policy in a data-rich environment," Journal of Monetary Economics, Elsevier, vol. 50(3), pages 525-546, April.
  15. Marcellino, Massimiliano & Stock, James H. & Watson, Mark W., 2003. "Macroeconomic forecasting in the Euro area: Country specific versus area-wide information," European Economic Review, Elsevier, vol. 47(1), pages 1-18, February.
  16. K. J. Martijn Cremers, 2002. "Stock Return Predictability: A Bayesian Model Selection Perspective," Review of Financial Studies, Society for Financial Studies, vol. 15(4), pages 1223-1249.
  17. Gary Koop & Simon Potter, 2003. "Forecasting in large macroeconomic panels using Bayesian Model Averaging," Staff Reports 163, Federal Reserve Bank of New York.
  18. Avramov, Doron, 2002. "Stock return predictability and model uncertainty," Journal of Financial Economics, Elsevier, vol. 64(3), pages 423-458, June.
  19. Jushan Bai & Serena Ng, 2004. "Confidence Intervals for Diffusion Index Forecasts with a Large Number of Predictor," Econometrics 0408006, EconWPA.
  20. repec:rus:hseeco:70719 is not listed on IDEAS
  21. Atsushi Inoue & Mototsugu Shintani, 2001. "Bootstrapping GMM Estimators for Time Series," Vanderbilt University Department of Economics Working Papers 0129, Vanderbilt University Department of Economics, revised Aug 2003.
  22. Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Capistrán, Carlos & Timmermann, Allan, 2009. "Forecast Combination With Entry and Exit of Experts," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 428-440.
  2. Rangan Gupta & Mampho P. Modise & Josine Uwilingiye, 2011. "Out-of-Sample Equity Premium Predictability in South Africa: Evidence from a Large Number of Predictors," Working Papers 201122, University of Pretoria, Department of Economics.
  3. Huyn Hak Kim & Norman R. Swanson, 2011. "Forecasting Financial and Macroeconomic Variables Using Data Reduction Methods: New Empirical Evidence," Departmental Working Papers 201119, Rutgers University, Department of Economics.
  4. Andrew Ang & Geert Bekaert & Min Wei, 2005. "Do Macro Variables, Asset Markets or Surveys Forecast Inflation Better?," NBER Working Papers 11538, National Bureau of Economic Research, Inc.
  5. Clements, Michael P & Galvão, Ana Beatriz, 2006. "Macroeconomic Forecasting with Mixed Frequency Data : Forecasting US output growth and inflation," The Warwick Economics Research Paper Series (TWERPS) 773, University of Warwick, Department of Economics.
  6. Gloria González-Rivera & Tae-Hwy Lee, 2007. "Nonlinear Time Series in Financial Forecasting," Working Papers 200803, University of California at Riverside, Department of Economics, revised Feb 2008.
  7. Lee, Tae-Hwy & Yang, Yang, 2006. "Bagging binary and quantile predictors for time series," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 465-497.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:cpr:ceprdp:5304. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ().

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.