Advanced Search
MyIDEAS: Login

Forecasting U.S. inflation by Bayesian Model Averaging

Contents:

Author Info

  • Jonathan H. Wright

Abstract

Recent empirical work has considered the prediction of inflation by combining the information in a large number of time series. One such method that has been found to give consistently good results consists of simple equal weighted averaging of the forecasts over a large number of different models, each of which is a linear regression model that relates inflation to a single predictor and a lagged dependent variable. In this paper, I consider using Bayesian Model Averaging for pseudo out-of-sample prediction of US inflation, and find that it gives more accurate forecasts than simple equal weighted averaging. This superior performance is consistent across subsamples and inflation measures. Meanwhile, both methods substantially outperform a naive time series benchmark of predicting inflation by an autoregression.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.federalreserve.gov/pubs/ifdp/2003/780/default.htm
Download Restriction: no

File URL: http://www.federalreserve.gov/pubs/ifdp/2003/780/ifdp780.pdf
Download Restriction: no

Bibliographic Info

Paper provided by Board of Governors of the Federal Reserve System (U.S.) in its series International Finance Discussion Papers with number 780.

as in new window
Length:
Date of creation: 2003
Date of revision:
Handle: RePEc:fip:fedgif:780

Contact details of provider:
Postal: 20th Street and Constitution Avenue, NW, Washington, DC 20551
Web page: http://www.federalreserve.gov/
More information through EDIRC

Order Information:
Web: http://www.federalreserve.gov/pubs/ifdp/order.htm

Related research

Keywords: Inflation (Finance) ; Forecasting;

Other versions of this item:

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Richard Clarida & Jordi Galí & Mark Gertler, 1997. "Monetary policy rules and macroeconomic stability: Evidence and some theory," Economics Working Papers 350, Department of Economics and Business, Universitat Pompeu Fabra, revised May 1999.
  2. Ben S. Bernanke & Jean Boivin, 2001. "Monetary Policy in a Data-Rich Environment," NBER Working Papers 8379, National Bureau of Economic Research, Inc.
  3. Gary Koop & Simon Potter, 2003. "Forecasting in Large Macroeconomic Panels using Bayesian Model Averaging," Discussion Papers in Economics 04/16, Department of Economics, University of Leicester.
  4. Stephen G. Cecchetti & Rita S. Chu & Charles Steindel, 2000. "The unreliability of inflation indicators," Current Issues in Economics and Finance, Federal Reserve Bank of New York, vol. 6(Apr).
  5. James H. Stock & Mark W.Watson, 2003. "Forecasting Output and Inflation: The Role of Asset Prices," Journal of Economic Literature, American Economic Association, vol. 41(3), pages 788-829, September.
  6. Min, Chung-ki & Zellner, Arnold, 1993. "Bayesian and non-Bayesian methods for combining models and forecasts with applications to forecasting international growth rates," Journal of Econometrics, Elsevier, vol. 56(1-2), pages 89-118, March.
  7. Carmen Fernandez & Eduardo Ley & Mark Steel, 2001. "Model uncertainty in cross-country growth regressions," Econometrics 0110002, EconWPA.
  8. James H. Stock & Mark W. Watson, 1999. "Forecasting Inflation," NBER Working Papers 7023, National Bureau of Economic Research, Inc.
  9. Avramov, Doron, 2002. "Stock return predictability and model uncertainty," Journal of Financial Economics, Elsevier, vol. 64(3), pages 423-458, June.
  10. Wright, Jonathan H., 2008. "Bayesian Model Averaging and exchange rate forecasts," Journal of Econometrics, Elsevier, vol. 146(2), pages 329-341, October.
  11. Andrew Atkeson & Lee E. Ohanian., 2001. "Are Phillips curves useful for forecasting inflation?," Quarterly Review, Federal Reserve Bank of Minneapolis, issue Win, pages 2-11.
  12. Gernot Doppelhofer & Ronald I. Miller & Xavier Sala-i-Martin, 2000. "Determinants of Long-Term Growth: A Bayesian Averaging of Classical Estimates (BACE) Approach," NBER Working Papers 7750, National Bureau of Economic Research, Inc.
  13. K. J. Martijn Cremers, 2002. "Stock Return Predictability: A Bayesian Model Selection Perspective," Review of Financial Studies, Society for Financial Studies, vol. 15(4), pages 1223-1249.
  14. Mark W. Watson & James H. Stock, 2004. "Combination forecasts of output growth in a seven-country data set," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(6), pages 405-430.
  15. Christopher A. Sims, 2002. "The Role of Models and Probabilities in the Monetary Policy Process," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 33(2), pages 1-62.
  16. Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
This item has more than 25 citations. To prevent cluttering this page, these citations are listed on a separate page.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:fip:fedgif:780. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Kris Vajs).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.