Advanced Search
MyIDEAS: Login to save this paper or follow this series

Forecasting in large macroeconomic panels using Bayesian Model Averaging

Contents:

Author Info

  • Gary Koop
  • Simon Potter

Abstract

This paper considers the problem of forecasting in large macroeconomic panels using Bayesian model averaging. Practical methods for implementing Bayesian model averaging with factor models are described. These methods involve algorithms that simulate from the space defined by all possible models. We explain how these simulation algorithms can also be used to select the model with the highest marginal likelihood (or highest value of an information criterion) in an efficient manner. We apply these methods to the problem of forecasting GDP and inflation using quarterly U.S. data on 162 time series. Our analysis indicates that models containing factors do outperform autoregressive models in forecasting both GDP and inflation, but only narrowly and at short horizons. We attribute these findings to the presence of structural instability and the fact that lags of the dependent variable seem to contain most of the information relevant for forecasting.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.newyorkfed.org/research/staff_reports/sr163.html
Download Restriction: no

File URL: http://www.newyorkfed.org/research/staff_reports/sr163.pdf
Download Restriction: no

Bibliographic Info

Paper provided by Federal Reserve Bank of New York in its series Staff Reports with number 163.

as in new window
Length:
Date of creation: 2003
Date of revision:
Handle: RePEc:fip:fednsr:163

Contact details of provider:
Postal: 33 Liberty Street, New York, NY 10045-0001
Email:
Web page: http://www.newyorkfed.org/
More information through EDIRC

Order Information:
Email:
Web: http://www.ny.frb.org/rmaghome/staff_rp/

Related research

Keywords: Forecasting ; Econometric models ; Time-series analysis ; Macroeconomics ; Statistics;

Other versions of this item:

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Jushan Bai & Serena Ng, 2000. "Determining the Number of Factors in Approximate Factor Models," Boston College Working Papers in Economics 440, Boston College Department of Economics.
  2. Carmen Fernandez & E Ley & Mark F J Steel, 2004. "Benchmark priors for Bayesian models averaging," ESE Discussion Papers 66, Edinburgh School of Economics, University of Edinburgh.
  3. Ben Bernanke & Jean Boivin & Piotr S. Eliasz, 2005. "Measuring the Effects of Monetary Policy: A Factor-augmented Vector Autoregressive (FAVAR) Approach," The Quarterly Journal of Economics, MIT Press, vol. 120(1), pages 387-422, January.
  4. Carmen Fernandez & Eduardo Ley & Mark F. J. Steel, 2001. "Model uncertainty in cross-country growth regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 16(5), pages 563-576.
  5. Thomas Knox & James H. Stock & Mark W. Watson, 2001. "Empirical Bayes Forecasts of One Time Series Using Many Predictors," NBER Technical Working Papers 0269, National Bureau of Economic Research, Inc.
  6. Min, Chung-ki & Zellner, Arnold, 1993. "Bayesian and non-Bayesian methods for combining models and forecasts with applications to forecasting international growth rates," Journal of Econometrics, Elsevier, vol. 56(1-2), pages 89-118, March.
  7. Giannone, Domenico & Reichlin, Lucrezia & Sala, Luca, 2002. "Tracking Greenspan: Systematic and Unsystematic Monetary Policy Revisited," CEPR Discussion Papers 3550, C.E.P.R. Discussion Papers.
  8. Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia, 1999. "The Generalized Dynamic Factor Model: Identification and Estimation," CEPR Discussion Papers 2338, C.E.P.R. Discussion Papers.
  9. Stock, James H & Watson, Mark W, 2002. "Macroeconomic Forecasting Using Diffusion Indexes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 147-62, April.
  10. Raffaella Giacomini & Halbert White, 2003. "Tests of conditional predictive ability," Boston College Working Papers in Economics 572, Boston College Department of Economics.
  11. James H. Stock & Mark W. Watson, 2003. "Has the Business Cycle Changed and Why?," NBER Chapters, in: NBER Macroeconomics Annual 2002, Volume 17, pages 159-230 National Bureau of Economic Research, Inc.
  12. Dale J. Poirier, 1995. "Intermediate Statistics and Econometrics: A Comparative Approach," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262161494, December.
  13. Jean Boivin & Serena Ng, 2003. "Are More Data Always Better for Factor Analysis?," NBER Working Papers 9829, National Bureau of Economic Research, Inc.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
This item has more than 25 citations. To prevent cluttering this page, these citations are listed on a separate page.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:fip:fednsr:163. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Amy Farber).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.