Advanced Search
MyIDEAS: Login

Some Variables are More Worthy Than Others: New Diffusion Index Evidence on the Monitoring of Key Economic Indicators

Contents:

Author Info

  • Norman R. Swanson

    ()
    (Rutgers University)

  • Nii Ayi Armah

    ()
    (Bank of Canada)

Abstract

Central banks regularly monitor select financial and macroeconomic variables in order to obtain early indication of the impact of monetary policies. This practice is discussed on the Federal Reserve Bank of New York website, for example, where one particular set of macroeconomic “indicators” is given. In this paper, we define a particular set of “indicators” that is chosen to be representative of the typical sort of variable used in practice by both policy-setters and economic forecasters. As a measure of the “adequacy” of the “indicators”, we compare their predictive content with that of a group of observable factor proxies selected from amongst 132 macroeconomic and financial time series, using the diffusion index methodology of Stock and Watson (2002a,b) and the factor proxy methodology of Bai and Ng (2006a,b) and Armah and Swanson (2010). The variables that we predict are output growth and inflation, two representative variables from our set of indicators that are often discussed when assessing the impact of monetary policy. Interestingly, we find that that indicators are all contained within the set the observable variables that proxy our factors. Our findings, thus, support the notion that a judiciously chosen set of macroeconomic indicators can effectively provide the same macroeconomic policy-relevant information as that contained in a largescale time series dataset. Of course, the large-scale datasets are still required in order to select the key indicator variables or confirm one’s prior choice of key variables. Our findings also suggest that certain yield “spreads” are also useful indicators. The particular spreads that we find to be useful are the difference between Treasury or corporate yields and the federal funds rate. After conditioning on these variables, traditional spreads, such as the yield curve slope and the reverse yield gap are found to contain no additional marginal predictive content. We also find that the macroeconomic indicators (not including spreads) perform best when forecasting inflation in non-volatile time periods, while inclusion of our spread variables improves predictive accuracy in times of high volatility.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: ftp://snde.rutgers.edu/Rutgers/wp/2011-15.pdf
Download Restriction: no

Bibliographic Info

Paper provided by Rutgers University, Department of Economics in its series Departmental Working Papers with number 201115.

as in new window
Length: 20 pages
Date of creation: 15 May 2011
Date of revision:
Publication status: Published in Applied Financial Economics, 21, 43-60.
Handle: RePEc:rut:rutres:201115

Contact details of provider:
Postal: New Jersey Hall - 75 Hamilton Street, New Brunswick, NJ 08901-1248
Phone: (732) 932-7482
Fax: (732) 932-7416
Web page: http://snde.rutgers.edu/Rutgers/wp/rutgers-wplist.html
More information through EDIRC

Related research

Keywords: diffusion index; factor; forecast; macroeconometrics; monetary policy; parameter estimation error; proxy; federal reserve bank;

Other versions of this item:

Find related papers by JEL classification:

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-44, January.
  2. E. P. Davis & S. G. B. Henry, 1994. "The Use of Financial Spreads As Indicator Variables," IMF Working Papers 94/31, International Monetary Fund.
  3. Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia, 2005. "The Generalized Dynamic Factor Model: One-Sided Estimation and Forecasting," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 830-840, September.
  4. Harvey, Campbell R., 1988. "The real term structure and consumption growth," Journal of Financial Economics, Elsevier, vol. 22(2), pages 305-333, December.
  5. Dean Croushore & Tom Stark, 1999. "A real-time data set for macroeconomists," Working Papers 99-4, Federal Reserve Bank of Philadelphia.
  6. Kenneth D. West, 1994. "Asymptotic Inference About Predictive Ability," Macroeconomics 9410002, EconWPA.
  7. Jushan Bai & Serena Ng, 2000. "Determining the Number of Factors in Approximate Factor Models," Boston College Working Papers in Economics 440, Boston College Department of Economics.
  8. Jorion, Philippe & Mishkin, Frederic, 1991. "A multicountry comparison of term-structure forecasts at long horizons," Journal of Financial Economics, Elsevier, vol. 29(1), pages 59-80, March.
  9. Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia, 1999. "The Generalized Dynamic Factor Model: Identification and Estimation," CEPR Discussion Papers 2338, C.E.P.R. Discussion Papers.
  10. Bai, Jushan & Ng, Serena, 2007. "Determining the Number of Primitive Shocks in Factor Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 52-60, January.
  11. Benjamin M. Friedman & Kenneth Kuttner, 1993. "Why Does the Paper-Bill Spread Predict Real Economic Activity?," NBER Chapters, in: Business Cycles, Indicators and Forecasting, pages 213-254 National Bureau of Economic Research, Inc.
  12. Forni, Mario & Reichlin, Lucrezia, 1995. "Dynamic Common Factors in Large Cross-Sections," CEPR Discussion Papers 1285, C.E.P.R. Discussion Papers.
  13. Andrea Nobili, 2005. "Forecasting Output Growth And Inflation In The Euro Area: Are Financial Spreads Useful?," Temi di discussione (Economic working papers) 544, Bank of Italy, Economic Research and International Relations Area.
  14. Todd Clark & Michael McCracken, 2005. "Evaluating Direct Multistep Forecasts," Econometric Reviews, Taylor & Francis Journals, vol. 24(4), pages 369-404.
  15. Bai, Jushan & Ng, Serena, 2006. "Evaluating latent and observed factors in macroeconomics and finance," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 507-537.
  16. Plosser, Charles I. & Geert Rouwenhorst, K., 1994. "International term structures and real economic growth," Journal of Monetary Economics, Elsevier, vol. 33(1), pages 133-155, February.
  17. Estrella, Arturo & Hardouvelis, Gikas A, 1991. " The Term Structure as a Predictor of Real Economic Activity," Journal of Finance, American Finance Association, vol. 46(2), pages 555-76, June.
  18. Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
  19. Davis, E Philip & Fagan, Gabriel, 1997. "Are Financial Spreads Useful Indicators of Future Inflation and Output Growth in EU Countries?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 12(6), pages 701-14, Nov.-Dec..
  20. Gerlach, Stefan, 1997. "The Information Content of the Term Structure: Evidence for Germany," Empirical Economics, Springer, vol. 22(2), pages 161-79.
  21. Jushan Bai, 2003. "Inferential Theory for Factor Models of Large Dimensions," Econometrica, Econometric Society, vol. 71(1), pages 135-171, January.
  22. Sharon Kozicki, 1997. "Predicting real growth and inflation with the yield spread," Economic Review, Federal Reserve Bank of Kansas City, issue Q IV, pages 39-57.
  23. Estrella, Arturo & Mishkin, Frederic S., 1997. "The predictive power of the term structure of interest rates in Europe and the United States: Implications for the European Central Bank," European Economic Review, Elsevier, vol. 41(7), pages 1375-1401, July.
  24. McCracken, Michael W., 2007. "Asymptotics for out of sample tests of Granger causality," Journal of Econometrics, Elsevier, vol. 140(2), pages 719-752, October.
  25. Robert D. Laurent, 1988. "An interest rate-based indicator of monetary policy," Economic Perspectives, Federal Reserve Bank of Chicago, issue Jan, pages 3-14.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Kihwan Kim & Norman Swanson, 2013. "Diffusion Index Model Specification and Estimation Using Mixed Frequency Datasets," Departmental Working Papers 201315, Rutgers University, Department of Economics.
  2. Yucel, Eray, 2011. "A Review and Bibliography of Early Warning Models," MPRA Paper 32893, University Library of Munich, Germany.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:rut:rutres:201115. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ().

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.