Advanced Search
MyIDEAS: Login to save this article or follow this journal

Monitoring cyclical processes. A non-parametric approach

Contents:

Author Info

  • E. Andersson
Registered author(s):

    Abstract

    Forecasting the turning points in business cycles is important to economic and political decisions. Time series of business indicators often exhibit cycles that cannot easily be modelled with a parametric function. This article presents a method for monitoring time-series with cycles in order to detect the turning points. A non-parametric estimation procedure that uses only monotonicity restrictions is used. The methodology of statistical surveillance is used for developing a system for early warnings of cycle turning points in monthly data. In monitoring, the inference situation is one of repeated decisions. Measurements of the performance of a method of surveillance are, for example, average run length and expected delay to a correct alarm. The properties of the proposed monitoring system are evaluated by means of a simulation study. The false alarms are controlled by a fixed median run length to the first false alarm. Results are given on the median delay time to a correct alarm for two situations: a peak after two and three years respectively .

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://www.tandfonline.com/doi/abs/10.1080/0266476022000006685
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Bibliographic Info

    Article provided by Taylor & Francis Journals in its journal Journal of Applied Statistics.

    Volume (Year): 29 (2002)
    Issue (Month): 7 ()
    Pages: 973-990

    as in new window
    Handle: RePEc:taf:japsta:v:29:y:2002:i:7:p:973-990

    Contact details of provider:
    Web page: http://www.tandfonline.com/CJAS20

    Order Information:
    Web: http://www.tandfonline.com/pricing/journal/CJAS20

    Related research

    Keywords:

    References

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
    as in new window
    1. Arteaga, Carmen & Ledolter, Johannes, 1997. "Control charts based on order-restricted tests," Statistics & Probability Letters, Elsevier, vol. 32(1), pages 1-10, February.
    2. James H. Stock & Mark W. Watson, 1993. "A Procedure for Predicting Recessions with Leading Indicators: Econometric Issues and Recent Experience," NBER Chapters, in: Business Cycles, Indicators and Forecasting, pages 95-156 National Bureau of Economic Research, Inc.
    3. Chris Birchenhall & Marianne Sensier, 2000. "Predicting UK Business Cycle Regimes," Econometric Society World Congress 2000 Contributed Papers 0953, Econometric Society.
    4. Francis X. Diebold & Glenn D. Rudebusch, 1994. "Measuring Business Cycles: A Modern Perspective," NBER Working Papers 4643, National Bureau of Economic Research, Inc.
    5. Neftici, Salih N., 1982. "Optimal prediction of cyclical downturns," Journal of Economic Dynamics and Control, Elsevier, vol. 4(1), pages 225-241, November.
    6. Francis X. Diebold & Glenn D. Rudebusch, 1987. "Scoring the leading indicators," Special Studies Papers 206, Board of Governors of the Federal Reserve System (U.S.).
    7. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-84, March.
    8. Zarnowitz, Victor & Moore, Geoffrey H, 1982. "Sequential Signals of Recession and Recovery," The Journal of Business, University of Chicago Press, vol. 55(1), pages 57-85, January.
    9. Li, David T & Dorfman, Jeffrey H, 1996. "Predicting Turning Points through the Integration of Multiple Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(4), pages 421-28, October.
    10. Layton, Allan P., 1996. "Dating and predicting phase changes in the U.S. business cycle," International Journal of Forecasting, Elsevier, vol. 12(3), pages 417-428, September.
    11. Neftci, Salih N, 1984. "Are Economic Time Series Asymmetric over the Business Cycle?," Journal of Political Economy, University of Chicago Press, vol. 92(2), pages 307-28, April.
    12. Birchenhall, Chris R, et al, 1999. "Predicting U.S. Business-Cycle Regimes," Journal of Business & Economic Statistics, American Statistical Association, vol. 17(3), pages 313-23, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as in new window

    Cited by:
    1. Michael Berlemann & Julia Freese & Sven Knoth, 2012. "Eyes Wide Shut? The U.S. House Market Bubble through the Lense of Statistical Process Control," CESifo Working Paper Series 3962, CESifo Group Munich.
    2. Christian Sonesson, 2003. "Evaluations of some Exponentially Weighted Moving Average methods," Journal of Applied Statistics, Taylor & Francis Journals, vol. 30(10), pages 1115-1133.
    3. Andersson, E., 2005. "On-line detection of turning points using non-parametric surveillance: The effect of the growth after the turn," Statistics & Probability Letters, Elsevier, vol. 73(4), pages 433-439, July.

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:29:y:2002:i:7:p:973-990. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Michael McNulty).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.