IDEAS home Printed from https://ideas.repec.org/a/spr/joevec/v30y2020i3d10.1007_s00191-020-00661-z.html
   My bibliography  Save this article

Knowledge recombination along the technology life cycle

Author

Listed:
  • Martin Kalthaus

    (Friedrich Schiller University Jena)

Abstract

This study sheds light on how recombination of different kinds of knowledge changes along the technology life cycle. From a theoretical point of view, the cyclical technology life cycle model is extended to account for the influence of recombination of different kinds of knowledge in the different life cycle phases. This model is empirically tested for the technological life cycle of wind power and photovoltaics in Germany for the period from 1970 until 2006. Patent forward citations are considered as recombinatorial success and inventors’ patenting experience proxy different kinds of knowledge. Negative binomial regressions as well as rolling-window regressions are used to estimate the relevance of different kinds of knowledge along the technology life cycle. Results reveal that different kinds of knowledge matter along the technology life cycle. In the era of ferment, knowledge from domains external to the technology is relevant, but for the dominant design and the era of incremental change, new and specialized knowledge is most important. However, there are technological differences and deviations from the model. Rolling-window regressions reveal nuanced changes in the life cycle phases. The results have several policy and management implications, especially for the timing of whom to fund or hire for inventive activity.

Suggested Citation

  • Martin Kalthaus, 2020. "Knowledge recombination along the technology life cycle," Journal of Evolutionary Economics, Springer, vol. 30(3), pages 643-704, July.
  • Handle: RePEc:spr:joevec:v:30:y:2020:i:3:d:10.1007_s00191-020-00661-z
    DOI: 10.1007/s00191-020-00661-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00191-020-00661-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00191-020-00661-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Juan Alcácer & Michelle Gittelman, 2006. "Patent Citations as a Measure of Knowledge Flows: The Influence of Examiner Citations," The Review of Economics and Statistics, MIT Press, vol. 88(4), pages 774-779, November.
    2. Benjamin F. Jones, 2009. "The Burden of Knowledge and the "Death of the Renaissance Man": Is Innovation Getting Harder?," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 76(1), pages 283-317.
    3. Volkmar Lauber & Lutz Mez, 2004. "Three Decades of Renewable Electricity Policies in Germany," Energy & Environment, , vol. 15(4), pages 599-623, July.
    4. Nyakabawo, Wendy & Miller, Stephen M. & Balcilar, Mehmet & Das, Sonali & Gupta, Rangan, 2015. "Temporal causality between house prices and output in the US: A bootstrap rolling-window approach," The North American Journal of Economics and Finance, Elsevier, vol. 33(C), pages 55-73.
    5. Jurriën Bakker & Dennis Verhoeven & Lin Zhang & Bart Van Looy, 2016. "Patent citation indicators: One size fits all?," Scientometrics, Springer;Akadémiai Kiadó, vol. 106(1), pages 187-211, January.
    6. Bruce Kogut & Udo Zander, 1992. "Knowledge of the Firm, Combinative Capabilities, and the Replication of Technology," Organization Science, INFORMS, vol. 3(3), pages 383-397, August.
    7. Joel A. C. Baum & Robin Cowan & Nicolas Jonard, 2010. "Network-Independent Partner Selection and the Evolution of Innovation Networks," Management Science, INFORMS, vol. 56(11), pages 2094-2110, November.
    8. Manuel Trajtenberg, 1990. "A Penny for Your Quotes: Patent Citations and the Value of Innovations," RAND Journal of Economics, The RAND Corporation, vol. 21(1), pages 172-187, Spring.
    9. Martin Meyer, 2006. "Are Co-Active Researchers on Top of their Class? An Exploratory Comparison of Inventor-Authors with their Non-Inventing Peers in Nano-Science and Technology," SPRU Working Paper Series 144, SPRU - Science Policy Research Unit, University of Sussex Business School.
    10. Leydesdorff, Loet & Fritsch, Michael, 2006. "Measuring the knowledge base of regional innovation systems in Germany in terms of a Triple Helix dynamics," Research Policy, Elsevier, vol. 35(10), pages 1538-1553, December.
    11. Andrew Davies, 1997. "The Life Cycle of a Complex Product System," International Journal of Innovation Management (ijim), World Scientific Publishing Co. Pte. Ltd., vol. 1(03), pages 229-256.
    12. von Hippel, Eric, 1976. "The dominant role of users in the scientific instrument innovation process," Research Policy, Elsevier, vol. 5(3), pages 212-239, July.
    13. Jackie Krafft & Francesco Quatraro & Pier Saviotti, 2014. "Knowledge characteristics and the dynamics of technological alliances in pharmaceuticals: empirical evidence from Europe, US and Japan," Journal of Evolutionary Economics, Springer, vol. 24(3), pages 587-622, July.
    14. Kaplan, Sarah & Tripsas, Mary, 2008. "Thinking about technology: Applying a cognitive lens to technical change," Research Policy, Elsevier, vol. 37(5), pages 790-805, June.
    15. Christian Sternitzke, 2009. "Defining triadic patent families as a measure of technological strength," Scientometrics, Springer;Akadémiai Kiadó, vol. 81(1), pages 91-109, October.
    16. Arthur, W Brian, 1989. "Competing Technologies, Increasing Returns, and Lock-In by Historical Events," Economic Journal, Royal Economic Society, vol. 99(394), pages 116-131, March.
    17. Vona, Francesco & Consoli, Davide, 2009. "Innovation, human capital and earning distribution: towards a dynamic life-cycle approach," MPRA Paper 13032, University Library of Munich, Germany.
    18. Meyer, Martin, 2006. "Are patenting scientists the better scholars?: An exploratory comparison of inventor-authors with their non-inventing peers in nano-science and technology," Research Policy, Elsevier, vol. 35(10), pages 1646-1662, December.
    19. Francesco Vona & Davide Consoli, 2015. "Innovation and skill dynamics: a life-cycle approach," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 24(6), pages 1393-1415.
    20. Nick Johnstone & Ivan Haščič & David Popp, 2010. "Renewable Energy Policies and Technological Innovation: Evidence Based on Patent Counts," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 45(1), pages 133-155, January.
    21. repec:fth:harver:1473 is not listed on IDEAS
    22. Alessandra Scandura, 2013. "The role of scientific and market knowledge in the inventive process: evidence from a survey of industrial inventors," ERSA conference papers ersa13p128, European Regional Science Association.
    23. Antonelli, Cristiano & Krafft, Jackie & Quatraro, Francesco, 2010. "Recombinant knowledge and growth: The case of ICTs," Structural Change and Economic Dynamics, Elsevier, vol. 21(1), pages 50-69, March.
    24. Taylor, Margaret & Taylor, Andrew, 2012. "The technology life cycle: Conceptualization and managerial implications," International Journal of Production Economics, Elsevier, vol. 140(1), pages 541-553.
    25. Giovanni Dosi & Richard Nelson, 2013. "The Evolution of Technologies: An Assessment of the State-of-the-Art," Eurasian Business Review, Springer;Eurasia Business and Economics Society, vol. 3(1), pages 3-46, June.
    26. Raffo, Julio & Lhuillery, Stéphane, 2009. "How to play the "Names Game": Patent retrieval comparing different heuristics," Research Policy, Elsevier, vol. 38(10), pages 1617-1627, December.
    27. Martin L. Weitzman, 1998. "Recombinant Growth," The Quarterly Journal of Economics, Oxford University Press, vol. 113(2), pages 331-360.
    28. Utterback, James M & Abernathy, William J, 1975. "A dynamic model of process and product innovation," Omega, Elsevier, vol. 3(6), pages 639-656, December.
    29. Cameron, A Colin & Trivedi, Pravin K, 1986. "Econometric Models Based on Count Data: Comparisons and Applications of Some Estimators and Tests," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 1(1), pages 29-53, January.
    30. Ali Mohammadi & Chiara Franzoni, 2014. "Inventor's Knowledge Set as the Antecedent of Patent Importance," Industry and Innovation, Taylor & Francis Journals, vol. 21(1), pages 65-87, January.
    31. Pesaran, M. Hashem & Timmermann, Allan, 2005. "Small sample properties of forecasts from autoregressive models under structural breaks," Journal of Econometrics, Elsevier, vol. 129(1-2), pages 183-217.
    32. Wilson, Charlie, 2012. "Up-scaling, formative phases, and learning in the historical diffusion of energy technologies," Energy Policy, Elsevier, vol. 50(C), pages 81-94.
    33. Jackie Krafft & Francesco Quatraro & Pier Paolo Saviotti, 2011. "The knowledge-base evolution in biotechnology: a social network analysis," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 20(5), pages 445-475.
    34. Cantner, Uwe & Graf, Holger & Herrmann, Johannes & Kalthaus, Martin, 2016. "Inventor networks in renewable energies: The influence of the policy mix in Germany," Research Policy, Elsevier, vol. 45(6), pages 1165-1184.
    35. Nemet, Gregory F. & Johnson, Evan, 2012. "Do important inventions benefit from knowledge originating in other technological domains?," Research Policy, Elsevier, vol. 41(1), pages 190-200.
    36. Suarez, Fernando F., 2004. "Battles for technological dominance: an integrative framework," Research Policy, Elsevier, vol. 33(2), pages 271-286, March.
    37. Guellec, Dominique & Pottelsberghe de la Potterie, Bruno v., 2000. "Applications, grants and the value of patent," Economics Letters, Elsevier, vol. 69(1), pages 109-114, October.
    38. Weitzman, Martin L, 1996. "Hybridizing Growth Theory," American Economic Review, American Economic Association, vol. 86(2), pages 207-212, May.
    39. James Simmie & Rolf Sternberg & Juliet Carpenter, 2014. "New technological path creation: evidence from the British and German wind energy industries," Journal of Evolutionary Economics, Springer, vol. 24(4), pages 875-904, September.
    40. Dosi, Giovanni & Nelson, Richard R., 2010. "Technical Change and Industrial Dynamics as Evolutionary Processes," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 1, chapter 0, pages 51-127, Elsevier.
    41. Klepper, Steven, 1996. "Entry, Exit, Growth, and Innovation over the Product Life Cycle," American Economic Review, American Economic Association, vol. 86(3), pages 562-583, June.
    42. Jacques Michel & Bernd Bettels, 2001. "Patent citation analysis.A closer look at the basic input data from patent search reports," Scientometrics, Springer;Akadémiai Kiadó, vol. 51(1), pages 185-201, April.
    43. Jackie Krafft & Francesco Quatraro & Pier Paolo Saviotti, 2014. "The dynamics of knowledge intensive sectors' knowledge base: evidence from biotechnology and telecommunications," Post-Print hal-01123022, HAL.
    44. Nemet, Gregory F., 2012. "Inter-technology knowledge spillovers for energy technologies," Energy Economics, Elsevier, vol. 34(5), pages 1259-1270.
    45. Robert M. Grant, 1996. "Prospering in Dynamically-Competitive Environments: Organizational Capability as Knowledge Integration," Organization Science, INFORMS, vol. 7(4), pages 375-387, August.
    46. Robin Cowan & Nicolas Jonard & Jean-Benoit Zimmermann, 2007. "Bilateral Collaboration and the Emergence of Innovation Networks," Management Science, INFORMS, vol. 53(7), pages 1051-1067, July.
    47. Gautam Ahuja & Curba Morris Lampert, 2001. "Entrepreneurship in the large corporation: a longitudinal study of how established firms create breakthrough inventions," Strategic Management Journal, Wiley Blackwell, vol. 22(6‐7), pages 521-543, June.
    48. Carlo Menon, 2009. "Stars and Comets: An Exploration of the Patent Universe," SERC Discussion Papers 0037, Centre for Economic Performance, LSE.
    49. Dosi, Giovanni, 1993. "Technological paradigms and technological trajectories : A suggested interpretation of the determinants and directions of technical change," Research Policy, Elsevier, vol. 22(2), pages 102-103, April.
    50. Sari Pekkala Kerr & William R. Kerr, 2018. "Global Collaborative Patents," Economic Journal, Royal Economic Society, vol. 128(612), pages 235-272, July.
    51. Mary Tripsas, 2008. "Customer preference discontinuities: a trigger for radical technological change," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 29(2-3), pages 79-97.
    52. Adam B. Jaffe & Gaétan de Rassenfosse, 2017. "Patent citation data in social science research: Overview and best practices," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 68(6), pages 1360-1374, June.
    53. Jacobsson, Staffan & Johnson, Anna, 2000. "The diffusion of renewable energy technology: an analytical framework and key issues for research," Energy Policy, Elsevier, vol. 28(9), pages 625-640, July.
    54. Jean O. Lanjouw & Ariel Pakes & Jonathan Putnam, 1998. "How to Count Patents and Value Intellectual Property: The Uses of Patent Renewal and Application Data," Journal of Industrial Economics, Wiley Blackwell, vol. 46(4), pages 405-432, December.
    55. Peters, Michael & Schneider, Malte & Griesshaber, Tobias & Hoffmann, Volker H., 2012. "The impact of technology-push and demand-pull policies on technical change – Does the locus of policies matter?," Research Policy, Elsevier, vol. 41(8), pages 1296-1308.
    56. Leydesdorff, Loet & Dolfsma, Wilfred & Van der Panne, Gerben, 2006. "Measuring the knowledge base of an economy in terms of triple-helix relations among 'technology, organization, and territory'," Research Policy, Elsevier, vol. 35(2), pages 181-199, March.
    57. Dietmar Harhoff & Francis Narin & F. M. Scherer & Katrin Vopel, 1999. "Citation Frequency And The Value Of Patented Inventions," The Review of Economics and Statistics, MIT Press, vol. 81(3), pages 511-515, August.
    58. K. J. Arrow, 1971. "The Economic Implications of Learning by Doing," Palgrave Macmillan Books, in: F. H. Hahn (ed.), Readings in the Theory of Growth, chapter 11, pages 131-149, Palgrave Macmillan.
    59. Harhoff, Dietmar & Scherer, Frederic M. & Vopel, Katrin, 2003. "Citations, family size, opposition and the value of patent rights," Research Policy, Elsevier, vol. 32(8), pages 1343-1363, September.
    60. Jackie Krafft & Francesco Quatraro & Pier Paolo Saviotti, 2014. "The Dynamics of Knowledge-intensive Sectors' Knowledge Base: Evidence from Biotechnology and Telecommunications," Industry and Innovation, Taylor & Francis Journals, vol. 21(3), pages 215-242, April.
    61. Colombelli, Alessandra & Krafft, Jackie & Quatraro, Francesco, 2013. "Properties of knowledge base and firm survival: Evidence from a sample of French manufacturing firms," Technological Forecasting and Social Change, Elsevier, vol. 80(8), pages 1469-1483.
    62. Rogge, Karoline S. & Reichardt, Kristin, 2016. "Policy mixes for sustainability transitions: An extended concept and framework for analysis," Research Policy, Elsevier, vol. 45(8), pages 1620-1635.
    63. Fama, Eugene F & MacBeth, James D, 1973. "Risk, Return, and Equilibrium: Empirical Tests," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 607-636, May-June.
    64. Lionel Nesta & Pier Paolo Saviotti, 2005. "Coherence Of The Knowledge Base And The Firm'S Innovative Performance: Evidence From The U.S. Pharmaceutical Industry," Journal of Industrial Economics, Wiley Blackwell, vol. 53(1), pages 123-142, March.
    65. Czarnitzki, Dirk & Hussinger, Katrin & Schneider, Cédric, 2011. "“Wacky” patents meet economic indicators," Economics Letters, Elsevier, vol. 113(2), pages 131-134.
    66. Alessandra Scandura, 2019. "The role of scientific and market knowledge in the inventive process: evidence from a survey of industrial inventors," The Journal of Technology Transfer, Springer, vol. 44(4), pages 1029-1069, August.
    67. Marco Bettiol & Vladi Finotto & Eleonora Di Maria & Stefano Micelli, 2014. "The hidden side of innovation: why tinkerers matter," Working Papers 08, Department of Management, Università Ca' Foscari Venezia.
    68. Lizin, Sebastien & Leroy, Julie & Delvenne, Catherine & Dijk, Marc & De Schepper, Ellen & Van Passel, Steven, 2013. "A patent landscape analysis for organic photovoltaic solar cells: Identifying the technology's development phase," Renewable Energy, Elsevier, vol. 57(C), pages 5-11.
    69. Harborne, Paul & Hendry, Chris, 2009. "Pathways to commercial wind power in the US, Europe and Japan: The role of demonstration projects and field trials in the innovation process," Energy Policy, Elsevier, vol. 37(9), pages 3580-3595, September.
    70. Jonathan Adams, 2013. "The fourth age of research," Nature, Nature, vol. 497(7451), pages 557-560, May.
    71. Malerba, Franco & Orsenigo, Luigi, 2000. "Knowledge, Innovation Activities and Industrial Evolution," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 9(2), pages 289-313, June.
    72. Chang, Shu-Hao & Fan, Chin-Yuan, 2016. "Identification of the technology life cycle of telematics: A patent-based analytical perspective," Technological Forecasting and Social Change, Elsevier, vol. 105(C), pages 1-10.
    73. Arundel, Anthony & Kabla, Isabelle, 1998. "What percentage of innovations are patented? empirical estimates for European firms," Research Policy, Elsevier, vol. 27(2), pages 127-141, June.
    74. Leo Urban Wangler, 2013. "Renewables and innovation: did policy induced structural change in the energy sector effect innovation in green technologies?," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 56(2), pages 211-237, March.
    75. Jasjit Singh & Lee Fleming, 2010. "Lone Inventors as Sources of Breakthroughs: Myth or Reality?," Management Science, INFORMS, vol. 56(1), pages 41-56, January.
    76. Lee Fleming, 2001. "Recombinant Uncertainty in Technological Search," Management Science, INFORMS, vol. 47(1), pages 117-132, January.
    77. Benner, Mary & Waldfogel, Joel, 2008. "Close to you? Bias and precision in patent-based measures of technological proximity," Research Policy, Elsevier, vol. 37(9), pages 1556-1567, October.
    78. James G. March, 1991. "Exploration and Exploitation in Organizational Learning," Organization Science, INFORMS, vol. 2(1), pages 71-87, February.
    79. Satoshi Yasukawa & Shingo Kano, 2014. "Validating the usefulness of examiners’ forward citations from the viewpoint of applicants’ self-selection during the patent application procedure," Scientometrics, Springer;Akadémiai Kiadó, vol. 99(3), pages 895-909, June.
    80. Hoisl, Karin, 2007. "Tracing mobile inventors--The causality between inventor mobility and inventor productivity," Research Policy, Elsevier, vol. 36(5), pages 619-636, June.
    81. Mowery, David & Rosenberg, Nathan, 1993. "The influence of market demand upon innovation: A critical review of some recent empirical studies," Research Policy, Elsevier, vol. 22(2), pages 107-108, April.
    82. Zvi Griliches, 1998. "Patent Statistics as Economic Indicators: A Survey," NBER Chapters, in: R&D and Productivity: The Econometric Evidence, pages 287-343, National Bureau of Economic Research, Inc.
    83. Lanjouw, Jean O & Pakes, Ariel & Putnam, Jonathan, 1998. "How to Count Patents and Value Intellectual Property: The Uses of Patent Renewal and Application Data," Journal of Industrial Economics, Wiley Blackwell, vol. 46(4), pages 405-432, December.
    84. Carpenter, Mark P. & Narin, Francis & Woolf, Patricia, 1981. "Citation rates to technologically important patents," World Patent Information, Elsevier, vol. 3(4), pages 160-163, October.
    85. Dibiaggio, Ludovic & Nasiriyar, Maryam & Nesta, Lionel, 2014. "Substitutability and complementarity of technological knowledge and the inventive performance of semiconductor companies," Research Policy, Elsevier, vol. 43(9), pages 1582-1593.
    86. Raffaele Conti & Alfonso Gambardella & Myriam Mariani, 2014. "Learning to Be Edison: Inventors, Organizations, and Breakthrough Inventions," Organization Science, INFORMS, vol. 25(3), pages 833-849, June.
    87. Bronwyn H. Hall & Nathan Rosenberg (ed.), 2010. "Handbook of the Economics of Innovation," Handbook of the Economics of Innovation, Elsevier, edition 1, volume 1, number 1.
    88. Wesley M. Cohen & Richard R. Nelson & John P. Walsh, 2000. "Protecting Their Intellectual Assets: Appropriability Conditions and Why U.S. Manufacturing Firms Patent (or Not)," NBER Working Papers 7552, National Bureau of Economic Research, Inc.
    89. Lee, You-Na & Walsh, John P. & Wang, Jian, 2015. "Creativity in scientific teams: Unpacking novelty and impact," Research Policy, Elsevier, vol. 44(3), pages 684-697.
    90. Haupt, Reinhard & Kloyer, Martin & Lange, Marcus, 2007. "Patent indicators for the technology life cycle development," Research Policy, Elsevier, vol. 36(3), pages 387-398, April.
    91. Bar, Talia & Leiponen, Aija, 2012. "A measure of technological distance," Economics Letters, Elsevier, vol. 116(3), pages 457-459.
    92. David A. King, 2004. "The scientific impact of nations," Nature, Nature, vol. 430(6997), pages 311-316, July.
    93. Sahal, Devendra, 1985. "Technological guideposts and innovation avenues," Research Policy, Elsevier, vol. 14(2), pages 61-82, April.
    94. Joshua Lerner, 1994. "The Importance of Patent Scope: An Empirical Analysis," RAND Journal of Economics, The RAND Corporation, vol. 25(2), pages 319-333, Summer.
    95. Lori Rosenkopf & Paul Almeida, 2003. "Overcoming Local Search Through Alliances and Mobility," Management Science, INFORMS, vol. 49(6), pages 751-766, June.
    96. Nagaoka, Sadao & Motohashi, Kazuyuki & Goto, Akira, 2010. "Patent Statistics as an Innovation Indicator," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 2, chapter 0, pages 1083-1127, Elsevier.
    97. Breschi, Stefano & Lissoni, Francesco & Malerba, Franco, 2003. "Knowledge-relatedness in firm technological diversification," Research Policy, Elsevier, vol. 32(1), pages 69-87, January.
    98. Bronwyn H. Hall & Dietmar Harhoff, 2012. "Recent Research on the Economics of Patents," Annual Review of Economics, Annual Reviews, vol. 4(1), pages 541-565, July.
    99. Jean O. Lanjouw & Mark Schankerman, 1999. "The Quality of Ideas: Measuring Innovation with Multiple Indicators," NBER Working Papers 7345, National Bureau of Economic Research, Inc.
    100. Pino G. Audia & Jack A. Goncalo, 2007. "Past Success and Creativity over Time: A Study of Inventors in the Hard Disk Drive Industry," Management Science, INFORMS, vol. 53(1), pages 1-15, January.
    101. Antonelli,Cristiano & Colombelli, Alessandra, 2013. "Knowledge cumulability and complementarity in the knowledge generation function," Department of Economics and Statistics Cognetti de Martiis LEI & BRICK - Laboratory of Economics of Innovation "Franco Momigliano", Bureau of Research in Innovation, Complexity and Knowledge, Collegio 201303, University of Turin.
    102. Funk, Jeffery, 2009. "Components, systems and discontinuities: The case of magnetic recording and playback equipment," Research Policy, Elsevier, vol. 38(7), pages 1192-1202, September.
    103. Schoenmakers, Wilfred & Duysters, Geert, 2010. "The technological origins of radical inventions," Research Policy, Elsevier, vol. 39(8), pages 1051-1059, October.
    104. Martin Kalthaus, 2019. "Identifying technological sub-trajectories in patent data: the case of photovoltaics," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 28(4), pages 407-434, May.
    105. Jackie Krafft & Francesco Quatraro & Pier-Paolo Saviotti, 2014. "The dynamics of knowledge-intensive sectors’ knowledge base: Evidence from Biotechnology and Telecommunications," Post-Print halshs-01225834, HAL.
    106. David Popp, 2002. "Induced Innovation and Energy Prices," American Economic Review, American Economic Association, vol. 92(1), pages 160-180, March.
    107. repec:hal:spmain:info:hdl:2441/43aq8ffdqb82sbffkv69bt1eaa is not listed on IDEAS
    108. Atul Nerkar, 2003. "Old Is Gold? The Value of Temporal Exploration in the Creation of New Knowledge," Management Science, INFORMS, vol. 49(2), pages 211-229, February.
    109. Jaeyong Song & Paul Almeida & Geraldine Wu, 2003. "Learning--by--Hiring: When Is Mobility More Likely to Facilitate Interfirm Knowledge Transfer?," Management Science, INFORMS, vol. 49(4), pages 351-365, April.
    110. Sam Arts & Reinhilde Veugelers, 2015. "Technology familiarity, recombinant novelty, and breakthrough invention," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 24(6), pages 1215-1246.
    111. Lionel Nesta & Pier Paolo Saviotti, 2005. "Coherence of the Knowledge Base and the Firms’ Innovative Performance. Evidence from the Bio-Pharmaceutical Industry," SciencePo Working papers Main hal-03417696, HAL.
    112. William J. Baumol, 2004. "Education for Innovation: Entrepreneurial Breakthroughs vs. Corporate Incremental Improvements," NBER Working Papers 10578, National Bureau of Economic Research, Inc.
    113. Roper, Stephen & Hewitt-Dundas, Nola, 2015. "Knowledge stocks, knowledge flows and innovation: Evidence from matched patents and innovation panel data," Research Policy, Elsevier, vol. 44(7), pages 1327-1340.
    114. Thanh-Dong Pham & Byeong-Kyu Lee & Chi Hyeon Lee & Minh Viet Nguyen, 2015. "Emission Control Technology," Chapters, in: Farhad Nejadkoorki (ed.), Current Air Quality Issues, IntechOpen.
    115. Uwe Cantner & Andreas Meder & Anne ter Wal, 2008. "Innovator networks and regional knowledge base," Jena Economics Research Papers 2008-042, Friedrich-Schiller-University Jena.
    116. Malerba, Franco & Orsenigo, Luigi, 1996. "The Dynamics and Evolution of Industries," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 5(1), pages 51-87.
    117. Boh, Wai Fong & Evaristo, Roberto & Ouderkirk, Andrew, 2014. "Balancing breadth and depth of expertise for innovation: A 3M story," Research Policy, Elsevier, vol. 43(2), pages 349-366.
    118. Hélène Dernis & Mosahid Khan, 2004. "Triadic Patent Families Methodology," OECD Science, Technology and Industry Working Papers 2004/2, OECD Publishing.
    119. Marc Gruber & Dietmar Harhoff & Karin Hoisl, 2013. "Knowledge Recombination Across Technological Boundaries: Scientists vs. Engineers," Management Science, INFORMS, vol. 59(4), pages 837-851, April.
    120. Metcalfe, J S, 1995. "Technology Systems and Technology Policy in an Evolutionary Framework," Cambridge Journal of Economics, Oxford University Press, vol. 19(1), pages 25-46, February.
    121. Jean O. Lanjouw & Mark Schankerman, 2004. "Patent Quality and Research Productivity: Measuring Innovation with Multiple Indicators," Economic Journal, Royal Economic Society, vol. 114(495), pages 441-465, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Martin Kalthaus, 2017. "Identifying technological sub-trajectories in photovoltaic patents," Jena Economics Research Papers 2017-010, Friedrich-Schiller-University Jena.
    2. Bruns, Stephan B. & Kalthaus, Martin, 2020. "Flexibility in the selection of patent counts: Implications for p-hacking and evidence-based policymaking," Research Policy, Elsevier, vol. 49(1).
    3. Boutillier, Sophie & Laperche, Blandine & Lebert, Didier & Elouaer-Mrizak, Sana, 2023. "A systemic analysis of the technological trajectory at company level based on patent data: The case of Sanofi's vaccine technology," Technovation, Elsevier, vol. 124(C).
    4. Huang, Ying & Li, Ruinan & Zou, Fang & Jiang, Lidan & Porter, Alan L. & Zhang, Lin, 2022. "Technology life cycle analysis: From the dynamic perspective of patent citation networks," Technological Forecasting and Social Change, Elsevier, vol. 181(C).
    5. Tsouri, Maria & Hansen, Teis & Hanson, Jens & Steen, Markus, 2022. "Knowledge recombination for emerging technological innovations: The case of green shipping," Technovation, Elsevier, vol. 114(C).
    6. Na Zhang & Chao Sun & Min Xu & Xuemei Wang & Jia Deng, 2023. "Catching Up of Latecomer Economies in ICT for Sustainable Development: An Analysis Based on Technology Life Cycle Using Patent Data," Sustainability, MDPI, vol. 15(11), pages 1-29, June.
    7. Wittfoth, Sven & Berger, Theo & Moehrle, Martin G., 2022. "Revisiting the innovation dynamics theory: How effectiveness- and efficiency-oriented process innovations accompany product innovations," Technovation, Elsevier, vol. 112(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Orsatti, Gianluca & Quatraro, Francesco & Pezzoni, Michele, 2020. "The antecedents of green technologies: The role of team-level recombinant capabilities," Research Policy, Elsevier, vol. 49(3).
    2. Manuel Acosta & Daniel Coronado & Esther Ferrándiz & Manuel Jiménez, 2022. "Effects of knowledge spillovers between competitors on patent quality: what patent citations reveal about a global duopoly," The Journal of Technology Transfer, Springer, vol. 47(5), pages 1451-1487, October.
    3. Jungpyo Lee & So Young Sohn, 2017. "What makes the first forward citation of a patent occur earlier?," Scientometrics, Springer;Akadémiai Kiadó, vol. 113(1), pages 279-298, October.
    4. Stephan, Annegret & Bening, Catharina R. & Schmidt, Tobias S. & Schwarz, Marius & Hoffmann, Volker H., 2019. "The role of inter-sectoral knowledge spillovers in technological innovations: The case of lithium-ion batteries," Technological Forecasting and Social Change, Elsevier, vol. 148(C).
    5. Nicolas van Zeebroeck & Bruno van Pottelsberghe de la Potterie, 2011. "Filing strategies and patent value," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 20(6), pages 539-561, February.
    6. Hur, Wonchang & Oh, Junbyoung, 2021. "A man is known by the company he keeps?: A structural relationship between backward citation and forward citation of patents," Research Policy, Elsevier, vol. 50(1).
    7. Sarah Kaplan & Keyvan Vakili, 2015. "The double-edged sword of recombination in breakthrough innovation," Strategic Management Journal, Wiley Blackwell, vol. 36(10), pages 1435-1457, October.
    8. Bruns, Stephan B. & Kalthaus, Martin, 2020. "Flexibility in the selection of patent counts: Implications for p-hacking and evidence-based policymaking," Research Policy, Elsevier, vol. 49(1).
    9. Barbieri, Nicolò & Marzucchi, Alberto & Rizzo, Ugo, 2020. "Knowledge sources and impacts on subsequent inventions: Do green technologies differ from non-green ones?," Research Policy, Elsevier, vol. 49(2).
    10. Aaron K. Chatterji & Kira Fabrizio, 2012. "How Do Product Users Influence Corporate Invention?," Organization Science, INFORMS, vol. 23(4), pages 971-987, August.
    11. Maria Chiara Di Guardo & Kathryn Rudie Harrigan & Elona Marku, 2019. "M&A and diversification strategies: what effect on quality of inventive activity?," Journal of Management & Governance, Springer;Accademia Italiana di Economia Aziendale (AIDEA), vol. 23(3), pages 669-692, September.
    12. Samina Karim & Aseem Kaul, 2015. "Structural Recombination and Innovation: Unlocking Intraorganizational Knowledge Synergy Through Structural Change," Organization Science, INFORMS, vol. 26(2), pages 439-455, April.
    13. Battke, Benedikt & Schmidt, Tobias S. & Stollenwerk, Stephan & Hoffmann, Volker H., 2016. "Internal or external spillovers—Which kind of knowledge is more likely to flow within or across technologies," Research Policy, Elsevier, vol. 45(1), pages 27-41.
    14. Krafft Jackie & Quatraro Francesco & Colombelli Alessandra, 2011. "High Growth Firms and Technological Knowledge: Do gazelles follow exploration or exploitation strategies?," Department of Economics and Statistics Cognetti de Martiis LEI & BRICK - Laboratory of Economics of Innovation "Franco Momigliano", Bureau of Research in Innovation, Complexity and Knowledge, Collegio 201114, University of Turin.
    15. Sam Arts & Lee Fleming, 2018. "Paradise of Novelty—Or Loss of Human Capital? Exploring New Fields and Inventive Output," Organization Science, INFORMS, vol. 29(6), pages 1074-1092, December.
    16. Costantini, Valeria & Crespi, Francesco & Palma, Alessandro, 2017. "Characterizing the policy mix and its impact on eco-innovation: A patent analysis of energy-efficient technologies," Research Policy, Elsevier, vol. 46(4), pages 799-819.
    17. Keijl, S. & Gilsing, V.A. & Knoben, J. & Duysters, G., 2016. "The two faces of inventions: The relationship between recombination and impact in pharmaceutical biotechnology," Research Policy, Elsevier, vol. 45(5), pages 1061-1074.
    18. William Arant & Dirk Fornahl & Nils Grashof & Kolja Hesse & Cathrin Söllner, 2019. "University-industry collaborations—The key to radical innovations? [Universität-Industrie-Kooperationen – Der Schlüssel zu radikalen Innovationen?]," Review of Regional Research: Jahrbuch für Regionalwissenschaft, Springer;Gesellschaft für Regionalforschung (GfR), vol. 39(2), pages 119-141, October.
    19. Nemet, Gregory F., 2012. "Inter-technology knowledge spillovers for energy technologies," Energy Economics, Elsevier, vol. 34(5), pages 1259-1270.
    20. Jee, Su Jung & Kwon, Minji & Ha, Jung Moon & Sohn, So Young, 2019. "Exploring the forward citation patterns of patents based on the evolution of technology fields," Journal of Informetrics, Elsevier, vol. 13(4).

    More about this item

    Keywords

    Technology life cycle; Knowledge recombination; Wind power; Photovoltaics; Patent data; Rolling-window regression;
    All these keywords.

    JEL classification:

    • O31 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Innovation and Invention: Processes and Incentives
    • O34 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Intellectual Property and Intellectual Capital
    • Q55 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Technological Innovation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joevec:v:30:y:2020:i:3:d:10.1007_s00191-020-00661-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.