IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v140y2012i1p541-553.html
   My bibliography  Save this article

The technology life cycle: Conceptualization and managerial implications

Author

Listed:
  • Taylor, Margaret
  • Taylor, Andrew

Abstract

This paper argues that the technology life cycle literature is confused and incomplete. This literature is first reviewed with consideration of the related concepts of the life cycles for industries and products. By exploring the inter-relationships between these, an integrated view of the technology life cycle is produced. A new conceptualization of the technology life cycle is then proposed. This is represented as a model that incorporates three different levels for technology application, paradigm and generation. The model shows how separate paradigms emerge over time to achieve a given application. It traces the eras of ferment and incremental change and shows how technology generations evolve within these. It also depicts how the eras are separated by the emergence of a dominant design, and how paradigms are replaced at a technological discontinuity. By adopting this structure, the model can demarcate the evolution of technologies at varying levels of granularity from the specific products in which they may be manifest to the industries in which they are exploited.

Suggested Citation

  • Taylor, Margaret & Taylor, Andrew, 2012. "The technology life cycle: Conceptualization and managerial implications," International Journal of Production Economics, Elsevier, vol. 140(1), pages 541-553.
  • Handle: RePEc:eee:proeco:v:140:y:2012:i:1:p:541-553
    DOI: 10.1016/j.ijpe.2012.07.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925527312003131
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijpe.2012.07.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peter Thompson, 2005. "Selection and Firm Survival: Evidence from the Shipbuilding Industry, 1825-1914," The Review of Economics and Statistics, MIT Press, vol. 87(1), pages 26-36, February.
    2. Audretsch, David B., 1995. "Innovation, growth and survival," International Journal of Industrial Organization, Elsevier, vol. 13(4), pages 441-457, December.
    3. Aitken, James & Childerhouse, Paul & Towill, Denis, 2003. "The impact of product life cycle on supply chain strategy," International Journal of Production Economics, Elsevier, vol. 85(2), pages 127-140, August.
    4. Georgios Fotopoulos & Nigel Spence, 1998. "Entry and exit from manufacturing industries: symmetry, turbulence and simultaneity - some empirical evidence from Greek manufacturing industries, 1982-1988," Applied Economics, Taylor & Francis Journals, vol. 30(2), pages 245-262, February.
    5. Barry L. Bayus & Rajshree Agarwal, 2007. "The Role of Pre-Entry Experience, Entry Timing, and Product Technology Strategies in Explaining Firm Survival," Management Science, INFORMS, vol. 53(12), pages 1887-1902, December.
    6. Annette L. Ranft & Michael D. Lord, 2002. "Acquiring New Technologies and Capabilities: A Grounded Model of Acquisition Implementation," Organization Science, INFORMS, vol. 13(4), pages 420-441, August.
    7. Rosenkopf, Lori & Tushman, Michael L, 1998. "The Coevolution of Community Networks and Technology: Lessons from the Flight Simulation Industry," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 7(2), pages 311-346, June.
    8. Kaplan, Sarah & Tripsas, Mary, 2008. "Thinking about technology: Applying a cognitive lens to technical change," Research Policy, Elsevier, vol. 37(5), pages 790-805, June.
    9. Hsueh, Che-Fu, 2011. "An inventory control model with consideration of remanufacturing and product life cycle," International Journal of Production Economics, Elsevier, vol. 133(2), pages 645-652, October.
    10. Utterback, James M & Abernathy, William J, 1975. "A dynamic model of process and product innovation," Omega, Elsevier, vol. 3(6), pages 639-656, December.
    11. Birgitte Andersen, 1999. "The hunt for S-shaped growth paths in technological innovation: a patent study," Journal of Evolutionary Economics, Springer, vol. 9(4), pages 487-526.
    12. Alfred Kleinknecht & Kees Van Montfort & Erik Brouwer, 2002. "The Non-Trivial Choice between Innovation Indicators," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 11(2), pages 109-121.
    13. Nelson, Andrew J., 2009. "Measuring knowledge spillovers: What patents, licenses and publications reveal about innovation diffusion," Research Policy, Elsevier, vol. 38(6), pages 994-1005, July.
    14. Cusumano, Michael A. & Mylonadis, Yiorgos & Rosenbloom, Richard S., 1992. "Strategic Maneuvering and Mass-Market Dynamics: The Triumph of VHS over Beta," Business History Review, Cambridge University Press, vol. 66(1), pages 51-94, April.
    15. Suarez, Fernando F., 2004. "Battles for technological dominance: an integrative framework," Research Policy, Elsevier, vol. 33(2), pages 271-286, March.
    16. Haupt, Reinhard & Kloyer, Martin & Lange, Marcus, 2007. "Patent indicators for the technology life cycle development," Research Policy, Elsevier, vol. 36(3), pages 387-398, April.
    17. Sahal, Devendra, 1985. "Technological guideposts and innovation avenues," Research Policy, Elsevier, vol. 14(2), pages 61-82, April.
    18. Chien, Chen-Fu & Chen, Yun-Ju & Peng, Jin-Tang, 2010. "Manufacturing intelligence for semiconductor demand forecast based on technology diffusion and product life cycle," International Journal of Production Economics, Elsevier, vol. 128(2), pages 496-509, December.
    19. Chang, Sheng-Lin & Wang, Reay-Chen & Wang, Shih-Yuan, 2006. "Applying fuzzy linguistic quantifier to select supply chain partners at different phases of product life cycle," International Journal of Production Economics, Elsevier, vol. 100(2), pages 348-359, April.
    20. Murmann, Johann Peter & Frenken, Koen, 2006. "Toward a systematic framework for research on dominant designs, technological innovations, and industrial change," Research Policy, Elsevier, vol. 35(7), pages 925-952, September.
    21. Klepper, Steven, 1997. "Industry Life Cycles," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 6(1), pages 145-181.
    22. Dosi, Giovanni, 1993. "Technological paradigms and technological trajectories : A suggested interpretation of the determinants and directions of technical change," Research Policy, Elsevier, vol. 22(2), pages 102-103, April.
    23. Funk, Jeffery, 2009. "Components, systems and discontinuities: The case of magnetic recording and playback equipment," Research Policy, Elsevier, vol. 38(7), pages 1192-1202, September.
    24. Deborah Dougherty, 2001. "Reimagining the Differentiation and Integration of Work for Sustained Product Innovation," Organization Science, INFORMS, vol. 12(5), pages 612-631, October.
    25. Geroski, P. A., 1995. "What do we know about entry?," International Journal of Industrial Organization, Elsevier, vol. 13(4), pages 421-440, December.
    26. Ron Adner & Daniel Levinthal, 2001. "Demand Heterogeneity and Technology Evolution: Implications for Product and Process Innovation," Management Science, INFORMS, vol. 47(5), pages 611-628, May.
    27. Gort, Michael & Klepper, Steven, 1982. "Time Paths in the Diffusion of Product Innovations," Economic Journal, Royal Economic Society, vol. 92(367), pages 630-653, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Martin Kalthaus, 2020. "Knowledge recombination along the technology life cycle," Journal of Evolutionary Economics, Springer, vol. 30(3), pages 643-704, July.
    2. WATANABE Ichiro & SHIMIZU Hiroshi, 2024. "Mainstream Formation and Competitive Dynamics in the Computer Graphics Industry: Topic modeling analysis of US patents," Discussion papers 24018, Research Institute of Economy, Trade and Industry (RIETI).
    3. Eilers, Kathi & Frischkorn, Jonas & Eppinger, Elisabeth & Walter, Lothar & Moehrle, Martin G., 2019. "Patent-based semantic measurement of one-way and two-way technology convergence: The case of ultraviolet light emitting diodes (UV-LEDs)," Technological Forecasting and Social Change, Elsevier, vol. 140(C), pages 341-353.
    4. Munari, Federico & Toschi, Laura, 2014. "Running ahead in the nanotechnology gold rush. Strategic patenting in emerging technologies," Technological Forecasting and Social Change, Elsevier, vol. 83(C), pages 194-207.
    5. Bonnín Roca, Jaime & Vaishnav, Parth & Morgan, Granger M. & Fuchs, Erica & Mendonça, Joana, 2021. "Technology Forgiveness: Why emerging technologies differ in their resilience to institutional instability," Technological Forecasting and Social Change, Elsevier, vol. 166(C).
    6. André Souza Oliveira & Raphael Oliveira dos Santos & Bruno Caetano dos Santos Silva & Lilian Lefol Nani Guarieiro & Matthias Angerhausen & Uwe Reisgen & Renelson Ribeiro Sampaio & Bruna Aparecida Souz, 2021. "A Detailed Forecast of the Technologies Based on Lifecycle Analysis of GMAW and CMT Welding Processes," Sustainability, MDPI, vol. 13(7), pages 1-23, March.
    7. Chang, Shu-Hao & Fan, Chin-Yuan, 2016. "Identification of the technology life cycle of telematics: A patent-based analytical perspective," Technological Forecasting and Social Change, Elsevier, vol. 105(C), pages 1-10.
    8. Anca-Liliana Opriş & Sorin Cristian Ionescu, 2016. "The Life Cycle Of Medical Imaging Technology," Romanian Economic Business Review, Romanian-American University, vol. 10(2), pages 404-415, December.
    9. Burmaoglu, Serhat & Sartenaer, Olivier & Porter, Alan, 2019. "Conceptual definition of technology emergence: A long journey from philosophy of science to science policy," Technology in Society, Elsevier, vol. 59(C).
    10. Frédéric Goulet & Matthieu Hubert, 2020. "Making a Place for Alternative Technologies: The Case of Agricultural Bio‐Inputs in Argentina," Review of Policy Research, Policy Studies Organization, vol. 37(4), pages 535-555, July.
    11. Li, Yanfei & Ji, Qiang & Zhang, Dayong, 2020. "Technological catching up and innovation policies in China: What is behind this largely successful story?," Technological Forecasting and Social Change, Elsevier, vol. 153(C).
    12. Goulet, Frédéric, 2021. "Characterizing alignments in socio-technical transitions. Lessons from agricultural bio-inputs in Brazil," Technology in Society, Elsevier, vol. 65(C).
    13. Etgar, Ran & Gelbard, Roy & Cohen, Yuval, 2017. "Optimizing version release dates of research and development long-term processes," European Journal of Operational Research, Elsevier, vol. 259(2), pages 642-653.
    14. Wang, Yinghuan & Wang, Baolin & Yan, Yan, 2022. "Does network externality affect your project? Evidences from reward-based technology crowdfunding," Technological Forecasting and Social Change, Elsevier, vol. 180(C).
    15. Okechukwu Okorie & Konstantinos Salonitis & Fiona Charnley & Mariale Moreno & Christopher Turner & Ashutosh Tiwari, 2018. "Digitisation and the Circular Economy: A Review of Current Research and Future Trends," Energies, MDPI, vol. 11(11), pages 1-31, November.
    16. Munan Li, 2015. "A novel three-dimension perspective to explore technology evolution," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(3), pages 1679-1697, December.
    17. Gross, Robert & Hanna, Richard & Gambhir, Ajay & Heptonstall, Philip & Speirs, Jamie, 2018. "How long does innovation and commercialisation in the energy sectors take? Historical case studies of the timescale from invention to widespread commercialisation in energy supply and end use technolo," Energy Policy, Elsevier, vol. 123(C), pages 682-699.
    18. Lin, Deming & Liu, Wenbin & Guo, Yinxin & Meyer, Martin, 2021. "Using technological entropy to identify technology life cycle," Journal of Informetrics, Elsevier, vol. 15(2).
    19. Bento, Nuno & Fontes, Margarida, 2019. "Emergence of floating offshore wind energy: Technology and industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 99(C), pages 66-82.
    20. Markard, Jochen, 2020. "The life cycle of technological innovation systems," Technological Forecasting and Social Change, Elsevier, vol. 153(C).
    21. Wang, I. Kim & Qian, Lihong & Lehrer, Mark, 2017. "From technology race to technology marathon: A behavioral explanation of technology advancement," European Management Journal, Elsevier, vol. 35(2), pages 187-197.
    22. Choi, Kanghwa & Narasimhan, Ram & Kim, Soo Wook, 2016. "Opening the technological innovation black box: The case of the electronics industry in Korea," European Journal of Operational Research, Elsevier, vol. 250(1), pages 192-203.
    23. Bonnin Roca, Jaime, 2022. "Teaching technological forecasting to undergraduate students: a reflection on challenges and opportunities," Technological Forecasting and Social Change, Elsevier, vol. 180(C).
    24. Kessler, Melanie & Arlinghaus, Julia C. & Rosca, Eugenia & Zimmermann, Manuel, 2022. "Curse or Blessing? Exploring risk factors of digital technologies in industrial operations," International Journal of Production Economics, Elsevier, vol. 243(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Murmann, Johann Peter & Frenken, Koen, 2006. "Toward a systematic framework for research on dominant designs, technological innovations, and industrial change," Research Policy, Elsevier, vol. 35(7), pages 925-952, September.
    2. Mary Tripsas, 2008. "Customer preference discontinuities: a trigger for radical technological change," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 29(2-3), pages 79-97.
    3. Lalit Manral, 2015. "The demand-side dynamics of entrant heterogeneity," Journal of Evolutionary Economics, Springer, vol. 25(2), pages 401-445, April.
    4. Martin Kalthaus, 2020. "Knowledge recombination along the technology life cycle," Journal of Evolutionary Economics, Springer, vol. 30(3), pages 643-704, July.
    5. Schmidt, Arne & Walter, Sascha G. & Walter, Achim, 2010. "Contingency Factors and the Technology-Performance-Relationship in Start-ups," EconStor Preprints 37082, ZBW - Leibniz Information Centre for Economics.
    6. Markard, Jochen, 2020. "The life cycle of technological innovation systems," Technological Forecasting and Social Change, Elsevier, vol. 153(C).
    7. Funk, Jeffery, 2009. "Components, systems and discontinuities: The case of magnetic recording and playback equipment," Research Policy, Elsevier, vol. 38(7), pages 1192-1202, September.
    8. Cefis, Elena & Marsili, Orietta, 2012. "Going, going, gone. Exit forms and the innovative capabilities of firms," Research Policy, Elsevier, vol. 41(5), pages 795-807.
    9. Kaplan, Sarah & Tripsas, Mary, 2008. "Thinking about technology: Applying a cognitive lens to technical change," Research Policy, Elsevier, vol. 37(5), pages 790-805, June.
    10. Malhotra, Abhishek & Zhang, Huiting & Beuse, Martin & Schmidt, Tobias, 2021. "How do new use environments influence a technology's knowledge trajectory? A patent citation network analysis of lithium-ion battery technology," Research Policy, Elsevier, vol. 50(9).
    11. Huenteler, Joern & Ossenbrink, Jan & Schmidt, Tobias S. & Hoffmann, Volker H., 2016. "How a product’s design hierarchy shapes the evolution of technological knowledge—Evidence from patent-citation networks in wind power," Research Policy, Elsevier, vol. 45(6), pages 1195-1217.
    12. Huenteler, Joern & Schmidt, Tobias S. & Ossenbrink, Jan & Hoffmann, Volker H., 2016. "Technology life-cycles in the energy sector — Technological characteristics and the role of deployment for innovation," Technological Forecasting and Social Change, Elsevier, vol. 104(C), pages 102-121.
    13. Narayanan, V.K. & Chen, Tianxu, 2012. "Research on technology standards: Accomplishment and challenges," Research Policy, Elsevier, vol. 41(8), pages 1375-1406.
    14. Ajay Bhaskarabhatla, 2016. "The Moderating Role of Submarket Dynamics on the Product Customization–Firm Survival Relationship," Organization Science, INFORMS, vol. 27(4), pages 1049-1064, August.
    15. Tavassoli, Sam, 2015. "Innovation determinants over industry life cycle," Technological Forecasting and Social Change, Elsevier, vol. 91(C), pages 18-32.
    16. Rajshree Agarwal & Barry L. Bayus, 2002. "The Market Evolution and Sales Takeoff of Product Innovations," Management Science, INFORMS, vol. 48(8), pages 1024-1041, August.
    17. Yang, Chia-Hsuan & Nugent, Rebecca & Fuchs, Erica R.H., 2016. "Gains from others’ losses: Technology trajectories and the global division of firms," Research Policy, Elsevier, vol. 45(3), pages 724-745.
    18. de Jong, Jeroen P.J. & Marsili, Orietta, 2006. "The fruit flies of innovations: A taxonomy of innovative small firms," Research Policy, Elsevier, vol. 35(2), pages 213-229, March.
    19. Ron Adner & Daniel Levinthal, 2001. "Demand Heterogeneity and Technology Evolution: Implications for Product and Process Innovation," Management Science, INFORMS, vol. 47(5), pages 611-628, May.
    20. Angel Sevil & Alfonso Cruz & Tomas Reyes & Roberto Vassolo, 2022. "When Being Large Is Not an Advantage: How Innovation Impacts the Sustainability of Firm Performance in Natural Resource Industries," Sustainability, MDPI, vol. 14(23), pages 1-20, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:140:y:2012:i:1:p:541-553. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.